có 1 hộp có 40 thẻ số đánh số từ 1 ...40 không nhìn vào hộp phải lấy ít nhất bao nhiêu thẻ để 2 số có hiệu là 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Cách 1: Gọi P n A là xác suất rút ít nhất được một thẻ ghi số chia hết cho 4 từ n lần rút.
Gọi P n B là xác suất không rút được thẻ ghi số chia hết cho 4 từ n lần rút.
a) Lần đầu tiên lấy thẻ, sau đó để lại vào hộp nên lần thứ 2 cũng sẽ có 3 trường hợp với 3 số xảy ra, nên ta có không gian mẫu của phép thử là:
\(\Omega = \left\{ {\left( {i;j} \right)\left| {i,j = 1,2,3} \right.} \right\}\) với i, j lần lượt là số được đánh trên thẻ được lấy lần đầu và lần hai
b) Lần đầu lấy một thẻ từ hộp, xem số, bỏ ra ngoài rồi lấy tiếp 1 thẻ khác từ hộp, nên lần hai chỉ có 2 trường hợp với hai số còn lại, nên ta có không gian mẫu của phép thử là:
\(\Omega = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)
(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)
c) Ta lấy đồng thời hai thẻ nên các số được đánh trên thẻ là khác nhau
\(\Omega = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)
(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)
a. Không gian mẫu: \(C_{10}^3\)
Số cách chọn 3 số nguyên liên tiếp: 8 cách (123; 234;...;8910)
Số cách chọn ra 3 số trong đó có đúng 2 số nguyên liên tiếp:
- Cặp liên tiếp là 12 hoặc 910 (2 cách): số còn lại có 7 cách chọn
- Cặp liên tiếp là 1 trong 7 cặp còn lại: số còn lại có 6 cách chọn
Vậy có: \(C_{10}^3-\left(8+2.7+7.6\right)=56\) bộ thỏa mãn
Xác suất: \(P=\dfrac{56}{C_{10}^3}=...\)
b.
Có 2 số chia hết cho 4 là 4 và 8
Rút ra k thẻ: \(C_{10}^k\) cách
Số cách để trong k thẻ có ít nhất 1 thẻ chia hết cho 4: \(C_{10}^k-C_8^k\)
Xác suất thỏa mãn: \(P=\dfrac{C_{10}^k-C_8^k}{C_{10}^k}>\dfrac{13}{15}\)
\(\Leftrightarrow\dfrac{2}{15}>\dfrac{C_8^k}{C_{10}^k}=\dfrac{\dfrac{8!}{k!\left(8-k\right)!}}{\dfrac{10!}{k!\left(10-k\right)!}}=\dfrac{\left(9-k\right)\left(10-k\right)}{90}\)
\(\Leftrightarrow\left(9-k\right)\left(10-k\right)-12< 0\Leftrightarrow k^2-19k+78< 0\)
\(\Rightarrow6< k< 13\)
1.
\(\left|\Omega\right|=15\)
a, \(P\left(A\right)=\dfrac{7}{15}\)
b, \(P\left(B\right)=\dfrac{2}{5}\)
c, \(P\left(C\right)=\dfrac{3}{5}\)
2.
\(\left|\Omega\right|=C^5_{18}\)
a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)
\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)
b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.
TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.
\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)
\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)
c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.
\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)
\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)
\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)
Trong trường hợp xấu nhất ta chọn phải tất cả các quả số 1, 2, ..., 9
và mỗi số từ 10 đến 100 mỗi số có 9 quả. Như vậy có tất cả 45+ 9×91 = 864
quả. Vậy phải lấy ít nhất 865 quả để đảm bảo có 10 quả cùng số.
Đáp số: 865.
mình ghi lộn có hiệu chia hết cho 8
ai trả lời nhanh mình chọn