Tìm x sao cho (x^2+x+1)(x^2-x+1) là số nguyên tố với x là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 1.x + 2 = 2x + 2
= 2 ( x + 1 )
Vì 2 ( x + 1 ) chẵn nên x + 1.x + 2 chẵn
mà x + 1.x + 2 nguyên tố
vậy nên 2(x+1) = 2
x + 1 = 1
x = 0
Vì x là số nguyên tố nên x = 0 ( không thỏa mãn )
Vậy không tồn tại x
Đúng thì k nha!
Xét 2 trường hợp x = 2 và x >2.
Với x = 2. Vì 2 là số nguyên tố và x2 + 1 = 5 cũng là số nguyên tố => x = 2 thỏa mãn
Với x > 2, vì x là nguyên tố => x chia 2 dư 1 => x2 chia cho 2 dư 1 => x2 +1 chia hết cho 2 . Mà x2 + 1 > 2 => x2 +1 không là số nguyên tố. Vậy không có số x nguyên tố nào lớn hơn 2 mà x2 + 1 cũng là số nguyên tố.
Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1
Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố
Do đó trong ba p, q, r số phải có là 3
\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)
\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)
Vậy...
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3