K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

có 2 cách một là nhóm hạng tử hai là phương pháp hệ số bất định. tại nhiều bạn làm cách nhóm quá nên mình làm hệ số bất định nhé

x- 6x3 - 12x2 - 14x + 3

= (x+ ax + b)(x2 + cx + d)

Tìm a, b, c, d thuộc Z 

ta có (x2 + ax + b)(x2 + cx + d)

= x4 + cx3 + dx+ ax+ acx2 + axd + bx2 + bcx + bd

= x4 + (a + c)x3 + (b + d + ac)x2 + (ad+bc)x + bd

Đồng nhất hệ số ta có:

a + c = -6

b + d + ac  = 12

ad + bc = -14

bd = 3

Nếu b = 1, d = 3, ta có \(\hept{\begin{cases}a+c=-6\\1+3+ac=-12\\3a+c=-14\end{cases}}\)    => \(\hept{\begin{cases}a=-4\\c=-2\\4+\left(-4\right)\left(-2\right)=12\end{cases}}\)

=> a = -4, b=1, d=3, c = -2

vậy x4 - 6x3 + 12x2 - 14x + 3 = (x2 - 4x + 1)(x- 2x + 3)

17 tháng 5 2018

a) ( x 2  – 4x + 1)( x 2  – 2x + 3).

b) ( x 2  + 5x – 1)( x 2  + x – 1).

2 tháng 9 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

22 tháng 7 2018

(x + y)- 1 - 3xy(x + y - 1)

= x3 + 3x2y + 3xy2 + y3 - 1 - 3x2y - 3xy2 + 3xy

= x3 - 1 + 3xy

= x(x2 + 3y) - 1

k bt lm nx r :v

22 tháng 7 2018

\(\left(x+y\right)^3-1-3xy\left(x+y-1\right) \)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

2 tháng 8 2018

B = (x + 3)(x - 1)(x - 5)(x + 15) + 64x2

B = x4 + 12x3 - 58x2 - 180x + 225 + 64x2

B = x4 + 12x3 + 6x2 - 180x + 225

17 tháng 11 2021

Đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

17 tháng 11 2021

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)

\(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)

\(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)

\(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)

\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)

2 tháng 8 2017

\(x^3-x^2-21x+45\)

\(=\left(x^3-3x^2\right)+\left(2x^2-6x\right)+\left(-15x+45\right)\)

\(=x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)\)

\(=\left(x^2+2x-15\right)\left(x-3\right)\)

\(=\left[\left(x^2-3x\right)+\left(5x-15\right)\right]\left(x-3\right)\)

\(=\left[x\left(x-3\right)+5\left(x-3\right)\right]\left(x-3\right)\)

\(=\left(x+5\right)\left(x-3\right)^2\)

\(=1\left(x^4+4\right)\)

6 tháng 7 2017

Ta có \(x^4+4=\left(x^2\right)^2+2^2=\left(x^2+2\right)^2-2.x^2.2=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

2 tháng 8 2018

         \(x^4+6x^3+11x^2+6x+1\)

\(=\left(x^4+6x^3+9x^2\right)+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Chúc bạn học tốt.