1−61 -− \dfrac{1}{8}81 ==
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{51}{53}+\dfrac{55}{57}+\dfrac{61}{63}+\dfrac{69}{71}+\dfrac{79}{81}+\dfrac{91}{93}\)
\(=\left(\dfrac{52}{53}-\dfrac{1}{53}\right)+\left(\dfrac{56}{57}-\dfrac{1}{57}\right)+\left(\dfrac{62}{63}-\dfrac{1}{63}\right)+\left(\dfrac{70}{71}-\dfrac{1}{71}\right)+\left(\dfrac{80}{81}-\dfrac{1}{81}\right)+\left(\dfrac{92}{93}-\dfrac{1}{93}\right)\)
\(=\left(1-\dfrac{1}{53}-\dfrac{1}{53}\right)+\left(1-\dfrac{1}{57}-\dfrac{1}{57}\right)+\left(1-\dfrac{1}{63}-\dfrac{1}{63}\right)+\left(1-\dfrac{1}{71}-\dfrac{1}{71}\right)+\left(1-\dfrac{1}{81}-\dfrac{1}{81}\right)+\left(1-\dfrac{1}{93}-\dfrac{1}{93}\right)\)
\(=\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)\)
\(=1+1+1+1+1+1\)
\(=6\)
\(=-\dfrac{1}{27}-\dfrac{1}{2}+\dfrac{9}{8}+9=\dfrac{2071}{216}\)
a, Theo đề ta có:
\(2.3^x-405=3^{x-1}\)
=> \(2.3^x-405=3^x:3\)
=> \(405=(2.3^x)-(3^x:3)\)
=>\(405=(2.3^x)-(3^x.\dfrac{1}{3})\)
=> \(405=3^x(2-\dfrac{1}{3})\)
=>\(405=3^x(\dfrac{6}{3}-\dfrac{1}{3})\)
=> \(405=3^x.\dfrac{5}{3}\)
=> \(3^x=405:\dfrac{5}{3}\)
=>\(3^x=405.\dfrac{3}{5}\)
=> \(3^x=81.3\)
=> \(3^x=243\)
=> \(3^x=3^5\)
=> x=5
Vậy:..............................
a, đk : x khác 5;-6
\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm)
b, đk : x khác 1;3
\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)
pt vô nghiệm
a, đk : x khác 5;-6
x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61
⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm)
b, đk : x khác 1;3
x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)
pt vô nghiệm
\(1.\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
\(2.\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2}{3}\)
Ý 1:
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
Ý 2:
\(\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{\left(2^3\right)^5.3^{15}}{2^{14}.\left(3^4\right)^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2^{14}.2.3^{15}}{2^{14}.3^{15}.3}=\dfrac{2}{3}\)
a: \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(\dfrac{3^6}{9}-81\right)\left(\dfrac{3}{4}-81\right)\cdot\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(81-81\right)\left(\dfrac{3}{4}-81\right)\cdot\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
=0
b: \(\dfrac{69}{157}-\left(2+\left(3+4+5^{-1}\right)^{-1}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(2+\left(3+4+\dfrac{1}{5}\right)^{-1}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(2+1:\dfrac{36}{5}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(2+\dfrac{5}{36}\right)^{-1}\)
\(=\dfrac{69}{157}-\left(\dfrac{77}{36}\right)^{-1}\)
\(=\dfrac{69}{157}-\dfrac{36}{77}=\dfrac{-339}{12089}\)
\(\dfrac{81}{125}=\dfrac{3^4}{5^3}\) ; \(-\dfrac{8}{27}=-\left(\dfrac{2}{3}\right)^3\)
what???????????????