tính (1-1/1.2)+(1-1/2.3)+(1-1/3.4)+...+(1-1/2015.2016)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2015.2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
a) \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\)
\(2A=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+...+\left(\frac{1}{100}-\frac{1}{102}\right)\)
\(2A=\frac{1}{2}-\frac{1}{102}\)
\(2A=\frac{25}{51}\)
\(A=\frac{25}{51}:2\)
\(A=\frac{25}{102}\)
Vậy \(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}=\frac{25}{102}\)
b) \(B=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}\)
\(B=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)
\(B=3.\left[\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\right]\)
\(B=3.\left(\frac{1}{1}-\frac{1}{2016}\right)\)
\(B=3.\frac{2015}{2016}\)
\(B=\frac{2015}{672}\)
Vậy \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}=\frac{2015}{672}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)
\(A=\frac{1}{1}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
S=2-1/1.2 . 3-2/2.3............2016-2015/2015.2016
=1/1 - 1/2 + 1/2 - 1/3+........+1/2015 - 1/2016
=1/1 - 1/2016
=2015/2016
Ta có \(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+\(\frac{1}{3\cdot4}\)+...+\(\frac{1}{2015\cdot2016}\)
=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2015}\)-\(\frac{1}{2016}\)
=1-\(\frac{1}{2016}\)
=\(\frac{2015}{2016}\)(bạn cứ nhớ công thức là làm được)
Ta thấy: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{2015.2016}=\frac{1}{2015}-\frac{1}{2016}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2015.2016}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(=\frac{0}{1.2}+\frac{0}{2.3}+\frac{0}{3.4}+...+\frac{0}{2015.2016}\)
\(=0+0+0+...+0=0\)