Biết sin a = 2/3. Tính giá trị của biểu thức
A = 2sin²a + 5cos²a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(A=1-2sin^2a+5cos^2a\) hay \(A=1-2sin^2a-5cos^2a\) vậy nhỉ?
\(A=\dfrac{4sina+5cosa}{2sina-3cosa}=\dfrac{\dfrac{4sina}{sina}+\dfrac{5cosa}{sina}}{\dfrac{2sina}{sina}-\dfrac{3cosa}{sina}}=\dfrac{4+5cota}{2-3cota}=\dfrac{4+5.\left(\dfrac{1}{2}\right)}{2-3.\left(\dfrac{1}{2}\right)}=...\)
\(A=2\left(sin^2a+cos^2a\right)+3cos^2a=2+3\cdot cos^2a\)
mặt khác: \(sina=\dfrac{2}{3}\Leftrightarrow a=sin^{-1}\left(\dfrac{2}{3}\right)\)
thay vào A , ta được:
\(A=2+3\cdot sin^{-1}\left(\dfrac{2}{3}\right)=....\) (số xấu quá!)
A=2(sin2a + cos2a) +3 cos2a=2+ 3 cos2a
ta có sin2a+cos2a=1
(2/3)2 + cos2a =1
cosa=\(\dfrac{\sqrt{5}}{3}\)
A=....
\(A=2\sin^2\alpha+5\left(1-\sin^2\alpha\right)=5-3\sin^2\alpha=5-3\left(\frac{2}{3}\right)^2\)=\(\frac{11}{3}\)
bài này dùng hình vẽ để tính các cạnh tam giác vuoog đc ko nhỉ ?
\(\hept{\begin{cases}sin^2a+c\text{os}^2a=1\\sina=2cosa\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{2}{\sqrt{5}}\\c\text{os}a=\frac{1}{\sqrt{5}}\end{cases}}\)hoặc \(\orbr{\begin{cases}sina=-\frac{2}{\sqrt{5}}\\c\text{os}a=-\frac{1}{\sqrt{5}}\end{cases}}\)
Thế vô đi
\(sina=\frac{2}{3}\Rightarrow cos^2a=1-sin^2a=\frac{5}{9}\)
\(A=2sin^2a+5cos^2a=\frac{8}{9}+\frac{25}{9}=\frac{11}{3}\)
\(B=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=\frac{4}{5}-\frac{5}{2}=-\frac{17}{10}\)
Ta có :\(sin^2a+cos^2a=1\)
Thay số: \(\left(\frac{2}{3}\right)^2\)\(+cos^2a=1\)\(\Rightarrow cos^2a=\frac{5}{9}\)
A=\(2sin^2a+5cos^2a\)\(\Rightarrow2.\frac{4}{9}+5.\frac{5}{9}\)\(\Rightarrow A=\frac{11}{3}\)