Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\dfrac{4sin\alpha}{sin\alpha}+\dfrac{5cos\alpha}{sin\alpha}}{\dfrac{2sin\alpha}{sin\alpha}-\dfrac{3cos\alpha}{sin\alpha}}\)
\(A=\dfrac{4+5cot\alpha}{2-3cot\alpha}\)
Biết cotα=\(\dfrac{1}{2}\) nên ta có:
\(A=\dfrac{4+5\cdot\dfrac{1}{2}}{2-3\cdot\dfrac{1}{2}}\)
\(A=\dfrac{4+\dfrac{5}{2}}{2-\dfrac{3}{2}}\)
A= 13
\(\dfrac{4sin\alpha+5cos\alpha}{2sin\alpha-3cos\alpha}=\dfrac{\dfrac{4sin\alpha}{cos\alpha}+\dfrac{5cos\alpha}{cos\alpha}}{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}=\dfrac{4tan\alpha+5}{2tan\alpha-3}\)
Biết \(tan\)=\(\dfrac{1}{3}\) nên ta có:
\(\dfrac{4\times\dfrac{1}{2}+5}{2\times\dfrac{1}{2}-3}=\dfrac{2+5}{2-3}=\dfrac{7}{-2}=\dfrac{-7}{2}\)
Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)
A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)
\(\dfrac{3sin\alpha-4cos\alpha}{2sin\alpha+3cos\alpha}=\dfrac{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}{\dfrac{2sin\alpha}{cos\alpha}+\dfrac{3cos\alpha}{cos\alpha}}=\dfrac{3tan\alpha-4}{2tan\alpha+3}\)
Biết tanα=\(-\dfrac{1}{4}\) nên ta có:
\(\dfrac{3\cdot\dfrac{-1}{4}-4}{2\cdot\dfrac{-1}{4}+3}=\dfrac{-\dfrac{3}{4}-4}{-\dfrac{1}{2}+3}=\dfrac{-19}{10}\)
\(tanx=3\) \(\Leftrightarrow sinx=3cosx\)
\(A=\dfrac{2.3.cosx-3cosx}{4cosx+5.3cosx}=\dfrac{3cosx}{19cosx}=\dfrac{3}{19}\)
\(B=\dfrac{sin^2x-4sinxcosx+3cos^2x}{5-2sin^2x}\)
\(=\dfrac{\left(3cosx\right)^2-4.3cosx.cosx+3cos^2x}{5-2\left(3cosx\right)^2}\)
\(=\dfrac{9cos^2x-12cos^2x+3cos^2x}{5-18cos^2x}=0\)
bạn ơi hình như chỗ -2sin^2x phải là +2sin^2x thì phải
nếu đúng là +2sin^2x thì biểu thức =2
\(A=\cos x+3\cos\left(\pi-x\right)-2\cos x-5\cos\left(\pi-x\right)\)
\(A=\cos x-3\cos x-2\cos x+5\cos x=\cos x\)
Check lại giùm mình nha, sợ lại nhìn nhầm đề hay biến đổi nhầm :<
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
\(A=\dfrac{4sina+5cosa}{2sina-3cosa}=\dfrac{\dfrac{4sina}{sina}+\dfrac{5cosa}{sina}}{\dfrac{2sina}{sina}-\dfrac{3cosa}{sina}}=\dfrac{4+5cota}{2-3cota}=\dfrac{4+5.\left(\dfrac{1}{2}\right)}{2-3.\left(\dfrac{1}{2}\right)}=...\)