K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

a, ta có \(\widehat{C}=\widehat{B}\) , MB=NC, DC=CB (gt)

⇒DNC ∼ CMB (c-g-c)

\(\widehat{DNC}=\widehat{CMB}\)

\(\widehat{CMB}+\widehat{MCB}=90^o\)

\(\widehat{DNC}+\widehat{MCB}=90^o\)

\(\widehat{E}\) vuông

⇒MC ⊥ DN

c, theo pitago tính được DN= \(\sqrt{2^2+4^2}=2\sqrt{5}\)

áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông vào ΔDNC ta có \(\dfrac{1}{EC^2}=\dfrac{1}{DC^2}+\dfrac{1}{NC^2}=\dfrac{1}{4^2}+\dfrac{1}{2^2}=\dfrac{5}{16}\)

⇒EC= \(\sqrt{\dfrac{1}{\dfrac{5}{16}}}=\dfrac{4\sqrt{5}}{5}\)

⇒ME=MC-EC=\(2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)

⇒SΔMDN=\(\dfrac{1}{2}.ME.DN=\dfrac{1}{2}\).\(\dfrac{6\sqrt{6}}{5}\). \(2\sqrt{5}\)= 6(cm)

b,theo định lý sin trong tam giác ta có \(\dfrac{MN}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)

\(\dfrac{2\sqrt{2}}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)

theo pitago ta tính được EN=\(\sqrt{CN^2-EC^2}=\sqrt{2^2-(\dfrac{4\sqrt{5}}{5})^2}\)=\(\dfrac{2\sqrt{5}}{5}\)

⇒sin\((\widehat{CMN)}\)=\(\dfrac{\sqrt{10}}{10}\)

áp dụng định lý cosin trong tam giác ta có

\(\cos\left(\widehat{CMN}\right)=\dfrac{MN^2+MC^2-CN^2}{2.MN.MC}=\dfrac{\left(2\sqrt{2}\right)^2+\left(2\sqrt{5}\right)^2-2^2}{2.2\sqrt{2}.2\sqrt{5}}=\dfrac{3\sqrt{10}}{10}\)

còn tan và cotan em tự tính nốt nhé

12 tháng 11 2015

tự vẽ hình nha 

lấy Q trung điểm CD

kẻ AQ =>AQ song song CM 

cm AQ vuông góc DN {tự cm}

tam giác DCI có AQ song song CM nên \(\frac{DQ}{QC}=\frac{DE}{EI}\) với E là giao điểm ND và AQ

tam giác ĐẠI có ĐỀ là đường cao và trung tuyến nên là tam giác vuông

tick nha 

 

16 tháng 12 2023

a: Ta có: ABCD là hình vuông

=>AB=BC=CD=DA(1)

Ta có: M là trung điểm của AB

=>\(MA=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của BC

=>\(NB=NC=\dfrac{BC}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra MA=MB=NB=NC

Xét ΔMBC vuông tại B và ΔNCD vuông tại C có

MB=NC

BC=CD

Do đó: ΔMBC=ΔNCD

=>\(\widehat{MCB}=\widehat{NDC}\)

mà \(\widehat{NDC}+\widehat{DNC}=90^0\)

nên \(\widehat{MCB}+\widehat{DNC}=90^0\)

=>CM\(\perp\)DN tại I

Ta có: ΔMBC=ΔNCD

=>MC=ND

b: Ta có: AH\(\perp\)DN

CM\(\perp\)DN

Do đó: AH//CM

=>AP//CM

Xét tứ giác AMCP có

AP//CM

AM//CP

Do đó: AMCP là hình bình hành

=>AM=CP

mà \(AM=\dfrac{AB}{2}=\dfrac{CD}{2}\)

nên \(CP=\dfrac{CD}{2}\)

=>P là trung điểm của CD

=>PC=PD

c: Xét ΔDIC có

P là trung điểm của DC

PH//IC

Do đó: H là trung điểm của DI

Xét ΔADI có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔADI cân tại A

=>AD=AI

mà AD=AB

nên AI=AB

6 tháng 12 2016

Bài này lớp 5 mà bạn

8 tháng 12 2016

Z bn giải giúp mình vs !!! Bn đủ thông minh để bài toán lớp 5 này mak he .

17 tháng 2 2019

đề bài sai rồi bn mk vẽ hình cho bn xem nè

M, N là td cùa AB,AC nhưng tam giác CIN ko vuông

A B M C D N I

26 tháng 3 2020

Dạ em có đáp án rồi, em cảm ơn