Cho hình vuông ABCD có độ dài các cạnh bằng 4cm. Gọi M và N lần lượt là trung điểm của AB và BC. Nối CM và DN cắt nhau tại E.
a) Chứng minh CM vuông góc với DN
b) Tính chính xác các tỉ số lượng giác của góc CMN
c) Tính diện tích của tam giác MDN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nha
lấy Q trung điểm CD
kẻ AQ =>AQ song song CM
cm AQ vuông góc DN {tự cm}
tam giác DCI có AQ song song CM nên \(\frac{DQ}{QC}=\frac{DE}{EI}\) với E là giao điểm ND và AQ
tam giác ĐẠI có ĐỀ là đường cao và trung tuyến nên là tam giác vuông
tick nha
a: Ta có: ABCD là hình vuông
=>AB=BC=CD=DA(1)
Ta có: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra MA=MB=NB=NC
Xét ΔMBC vuông tại B và ΔNCD vuông tại C có
MB=NC
BC=CD
Do đó: ΔMBC=ΔNCD
=>\(\widehat{MCB}=\widehat{NDC}\)
mà \(\widehat{NDC}+\widehat{DNC}=90^0\)
nên \(\widehat{MCB}+\widehat{DNC}=90^0\)
=>CM\(\perp\)DN tại I
Ta có: ΔMBC=ΔNCD
=>MC=ND
b: Ta có: AH\(\perp\)DN
CM\(\perp\)DN
Do đó: AH//CM
=>AP//CM
Xét tứ giác AMCP có
AP//CM
AM//CP
Do đó: AMCP là hình bình hành
=>AM=CP
mà \(AM=\dfrac{AB}{2}=\dfrac{CD}{2}\)
nên \(CP=\dfrac{CD}{2}\)
=>P là trung điểm của CD
=>PC=PD
c: Xét ΔDIC có
P là trung điểm của DC
PH//IC
Do đó: H là trung điểm của DI
Xét ΔADI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔADI cân tại A
=>AD=AI
mà AD=AB
nên AI=AB
Z bn giải giúp mình vs !!! Bn đủ thông minh để bài toán lớp 5 này mak he .
đề bài sai rồi bn mk vẽ hình cho bn xem nè
M, N là td cùa AB,AC nhưng tam giác CIN ko vuông
a, ta có \(\widehat{C}=\widehat{B}\) , MB=NC, DC=CB (gt)
⇒DNC ∼ CMB (c-g-c)
⇒\(\widehat{DNC}=\widehat{CMB}\)
mà \(\widehat{CMB}+\widehat{MCB}=90^o\)
⇒\(\widehat{DNC}+\widehat{MCB}=90^o\)
⇒\(\widehat{E}\) vuông
⇒MC ⊥ DN
c, theo pitago tính được DN= \(\sqrt{2^2+4^2}=2\sqrt{5}\)
áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông vào ΔDNC ta có \(\dfrac{1}{EC^2}=\dfrac{1}{DC^2}+\dfrac{1}{NC^2}=\dfrac{1}{4^2}+\dfrac{1}{2^2}=\dfrac{5}{16}\)
⇒EC= \(\sqrt{\dfrac{1}{\dfrac{5}{16}}}=\dfrac{4\sqrt{5}}{5}\)
⇒ME=MC-EC=\(2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
⇒SΔMDN=\(\dfrac{1}{2}.ME.DN=\dfrac{1}{2}\).\(\dfrac{6\sqrt{6}}{5}\). \(2\sqrt{5}\)= 6(cm)
b,theo định lý sin trong tam giác ta có \(\dfrac{MN}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)
⇔\(\dfrac{2\sqrt{2}}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)
theo pitago ta tính được EN=\(\sqrt{CN^2-EC^2}=\sqrt{2^2-(\dfrac{4\sqrt{5}}{5})^2}\)=\(\dfrac{2\sqrt{5}}{5}\)
⇒sin\((\widehat{CMN)}\)=\(\dfrac{\sqrt{10}}{10}\)
áp dụng định lý cosin trong tam giác ta có
\(\cos\left(\widehat{CMN}\right)=\dfrac{MN^2+MC^2-CN^2}{2.MN.MC}=\dfrac{\left(2\sqrt{2}\right)^2+\left(2\sqrt{5}\right)^2-2^2}{2.2\sqrt{2}.2\sqrt{5}}=\dfrac{3\sqrt{10}}{10}\)
còn tan và cotan em tự tính nốt nhé