cho tam giác ABC vuông tại A đường cao AH= 2.5cm BC= 6cm
a,tính AB,AC,HB,HC
b,tính tỉ số lượng giác của góc C
mn giải nhanh giùm e đc k ạ?? e đag gấp ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: BD là phân giác
=>BC/AB=DC/DA
Xét ΔHAC có DE//AH
nên EC/EH=DC/DA
=>BC/AB=EC/EH
=>AB/EH=BC/EC
c: AC=căn 20^2-12^2=16cm
DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2
=>DA=6cm; DC=10cm
S BAC=1/2*12*16=96cm2
S BAD=1/2*6*12=36cm2
=>S BDC=60cm2
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC,ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trug điểm của BC
hay HB=HC
b: BC=6cm
nên BH=3cm
=>\(AH=\sqrt{10^2-3^2}=\sqrt{91}\left(cm\right)\)
c: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
hay ΔAEF cân tại A
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4(đvđd)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot5=3\cdot4=12\\BH\cdot5=3^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\end{matrix}\right.\)
Diện tích tam giác ABH là:
\(S_{ABH}=\dfrac{AH\cdot HB}{2}=\dfrac{2.4\cdot1.8}{2}=2.4\cdot0.9=2.16\left(đvdt\right)\)
cái này dùng hệ thức lương thôi