a) Tìm nghiệm nguyên dương: 2x-5y=1
b) Tìm nghiệm nguyên âm: 4x+7y=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=\(\frac{5+7y}{2}=\frac{4+6y+y+1}{2}=\frac{2\left(2+3y\right)+y+1}{2}=2+3y+\frac{y+1}{2}\) Để phương trình có nghiệm nguyên thì \(\frac{y+1}{2}\)nguyên .Đặt \(\frac{y+1}{2}=t\)\(\left(t\in Z\right)\Rightarrow y=2t-1\)và \(x=7t\)
Tìm nghiệm nguyên của các phương trình sau:
a) 12x - 7y = 45 (1)
ta thấy 45 và 12 chia hết cho 3 nên y cũng phải chia hết cho 3
đặt y=3k, ta có:
12x-7.3k=45
<=> 4x-7k=15 (chia cả 2 vế cho 3)
<=> x= \(\frac{15+7k}{4}\)
<=> x= \(2k+4-\frac{k+1}{4}\)
đặt t=\(\frac{k+1}{4}\)(t \(\in\) Z) => k = 4t – 1
Do đó
x = 2(4t – 1) + 4 – t = 7t + 2
y = 3k = 3(4t - 1) = 12t – 3
Vậy nghiệm nguyên của phương trình được biểu thị bởi công thức:
\(\hept{\begin{cases}x=7t+2\\y=12t-3\end{cases}}\)
Câu b và c bạn làm tương tự
Thấy đúng thì k cho mình nhé
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ
<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ
=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ
=> 5y chẵn => y chẵn
Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ
=>x=0
Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:
\(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)
Do \(y\in Z\)nên ta tìm ra y=4
Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)
\(a,\)\(xy+3x+2y=6\)
\(\Rightarrow xy+3x+2y+6=6+6\)
\(\Rightarrow x\left(y+3\right)+2\left(y+3\right)=12\)
\(\Rightarrow\left(y+3\right)\left(y+2\right)=12\)
\(TH1\):\(\orbr{\begin{cases}y+3=1\\x+2=12\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=10\end{cases}}}\)
\(TH2\): \(\orbr{\begin{cases}y+3=-1\\x+2=-12\end{cases}\Rightarrow\orbr{\begin{cases}y=-4\\x=-14\end{cases}}}\)
\(TH3\): \(\orbr{\begin{cases}y+3=12\\x+2=1\end{cases}\Rightarrow\orbr{\begin{cases}y=9\\x=-1\end{cases}}}\)
\(TH4\): \(\orbr{\begin{cases}y+3=-12\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-15\\x=-3\end{cases}}}\)
\(TH5\): \(\orbr{\begin{cases}y+3=2\\x+2=6\end{cases}\Rightarrow\orbr{\begin{cases}y=-1\\x=4\end{cases}}}\)
\(TH6\): \(\orbr{\begin{cases}y+3=6\\x+2=2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)
\(TH7\): \(\orbr{\begin{cases}y+3=-2\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}y=-5\\x=-8\end{cases}}}\)
\(TH8\)\(:\)\(\orbr{\begin{cases}y+3=-6\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-9\\x=-4\end{cases}}}\)
\(TH9\): \(\orbr{\begin{cases}y+3=3\\x+2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=2\end{cases}}}\)
\(TH10\): \(\orbr{\begin{cases}y+3=4\\x+2=3\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=1\end{cases}}}\)
\(TH11\): \(\orbr{\begin{cases}y+3=-3\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}y=-6\\x=-6\end{cases}}}\)
\(TH12\): \(\orbr{\begin{cases}y+3=-4\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=-7\\x=-5\end{cases}}}\)
KL...
chưa thấy bạn nào làm bài 3 , thì em làm ạ :))
Giả sử x, y là các số nguyên thoă mãn phương trình đã cho .
\(4x+5y=2012\Leftrightarrow5y=2012-4y\Leftrightarrow5y=4\left(503-y\right).\)(1)
Dễ thấy vế phải của (1) chia hết cho 4 \(\Rightarrow5y⋮4\)mà (5;4)=1 nên y chia hết cho 4.
Đặt \(y=4t\left(t\in Z\right)\)thế vào phương trình đầu ta được : \(4x+20t=2012\Leftrightarrow\hept{\begin{cases}x=503-5t\\y=4t\end{cases}.}\)(*)
Thử thay vào các biểu thức của x, y ở (*) ta thấy thỏa mãn
Vậy phương trình có vô số nghiệm \(\left(x;y\right)=\left(503-5t;4t\right)\forall t\in Z.\)