Tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc tương đương F(1) của đa thức
\(f\left(1\right)=\left(2-2.1+1^2\right)^{2017}.\left(2.1-1\right)^{2018}\)
\(f\left(1\right)=1^{2017}.1^{2018}=1.1=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có (x-y)^2 >=0
(x-y)(x-y) >=0
x^2+y^2-2xy>=0
(x^2+y^2+2xy)-4xy>=0
(x+y)^2 >=4xy mà x+y=1
4xy <=1
xy<=1/4
dấu = xảy ra <=> (x-y)^2=0
<=>x-y=0 <=> x=y mà x+y=1
<=> x=y=0,5
GTLn của bt là 1/4 tại x=y=0,5
2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)
Bài này bạn chỉ cần thay x=1 vào rồi tính thui
Đáp số là: 8^2019
3.f(-2)=4a-2b+c
f(3)=9a+3b+c
=> f(-2)+f(3) =13a+b+2c=0
=> f(-2)=-f(3)
=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2
Mà -[f(3)]^2<=0 với mọi a,b,c
=> f(-2). f(3)<=0
T i ck cho mình ủng hộ nha
Tổng các hệ thức khi bỏ dấu ngoặc là
(3-4+1)2018.(3+4+1)2018=0
.
a,\(A=x^{2005}-2006x^{2004}+............+2006x-1\\ A=x^{2005}-\left(x+1\right)x^{2004}+..............+\left(x+1\right)x-1\\ A=x^{2005}-x^{2005}+x^{2004}-x^{2004}+.............+x^2+x-1\\ A=x-1\\ \Leftrightarrow A=2004\)vậy
a,A=x2005−2006x2004+............+2006x−1A=x2005−(x+1)x2004+..............+(x+1)x−1A=x2005−x2005+x2004−x2004+.............+x2+x−1A=x−1⇔A=2004
Tổng các hệ số của đa thức là giá trị của đa thức đó tại biến bằng 1
Ta có \(f\left(x\right)=\left(1-2.1+2.1^2\right)^{2019}\)
\(=1^{2019}=1\)
Vậy tổng các hệ số của đa thức f(x) sau khi phá ngoặc là 1
\(f\left(2k-1\right)=\left[\left(2k-1\right)^2+2k-1+1\right]^2+1\)
\(=\left(4k^2+1-2k\right)^2+1=\left(4k^2+1\right)^2-4k\left(4k^2+1\right)+4k^2+1\)
\(=\left(4k^2+1\right)\left(4k^2-4k+2\right)=\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]\)
\(f\left(2k\right)=\left(4k^2+1+2k\right)^2+1=\left(4k^2+1\right)^2+4k\left(4k^2+1\right)+4k^2+1\)
\(=\left(4k^2+1\right)\left(4k^2+4k+2\right)=\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]\)
\(\Rightarrow\frac{f\left(2k-1\right)}{f\left(2k\right)}=\frac{\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]}{\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]}=\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}\)
\(\Rightarrow\frac{f\left(1\right).f\left(3\right).f\left(5\right)...f\left(2k-1\right)}{f\left(2\right).f\left(4\right).f\left(6\right)...f\left(2k\right)}=\frac{2}{10}.\frac{10}{16}.\frac{16}{50}...\frac{\left(2k-3\right)^2+1}{\left(2k-1\right)^2+1}.\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}=\frac{2}{\left(2k+1\right)^2+1}\)
\(\Rightarrow\frac{f\left(1\right)f\left(3\right)...f\left(2017\right)}{f\left(2\right)f\left(4\right)...f\left(2018\right)}=\frac{2}{2019^2+1}=\frac{1}{2038181}\)
Lời giải:
Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)
\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)
Do đó:
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)
\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)
............
\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)
Cộng theo vế:
\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)
\(=\underbrace{1+1+1...+1}_{1008}=1008\)