Giả sử\(x=\dfrac{a}{m},y=\dfrac{b}{m}\left(a;b;m\in Z,m>0\right)\) và x < y. Hãy chứng tỏ rằng nếu chọn z=\(\dfrac{a+b}{2m}\) thì ta có x < z <y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu \(x=\dfrac{2}{2}\)và\(y=\dfrac{3}{2}\)
\(m=\dfrac{2+3}{2x2}\)\(=\dfrac{5}{4}\)
\(x=\dfrac{2}{2}\)\(=\dfrac{2x2}{2x2}\)\(=\dfrac{4}{4}\) ; \(y=\dfrac{3}{2}\)\(=\dfrac{3x2}{2x2}\)\(=\dfrac{6}{4}\)
vậy \(\dfrac{4}{4}\)\(< \dfrac{5}{4}\)\(< \dfrac{6}{4}\)
Theo đề bài ta có x = , y = ( a, b, m ∈ Z, m > 0)
Vì x < y nên ta suy ra a< b
Ta có : x = , y = ; z =
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Hãy chứng tỏ rằngGiả sử x = ; y = ( a, b, m Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z =∈ thì ta có x < z < yLời giải:Theo đề bài ta có x = , y = ( a, b, m Z, m > 0)∈Vì x < y nên ta suy ra a< bTa có : x = , y = ; z = Vì a < b => a + a < a +b => 2a < a + b
Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)
\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)
\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)
\(\Rightarrow x< z< y\)
Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)
Từ (1), Suy ra:
\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)
\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)
Từ (2);(3), ta có:
\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)
\(\Leftrightarrow x< z< y\left(đpcm\right)\)
1) Từ \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\), suy ra
\(\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)
Nhân cả 2 vế với \(\dfrac{1}{b-c}\Rightarrow\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)
Tương tự: \(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+ba-a^2}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\left(2\right)\)
\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+bc-b^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:
\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
2) Đặt vế trái đẳng thức cần chứng minh là P
Đặt \(A=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\), ta có:
\(A.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)
\(=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
Tương tự: \(A.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc},A.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)
Vậy \(P=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=9\)
P/S: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)(Cái này tự chứng minh)
Cách làm đơn giản nhất:
Do \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow F'\left(x\right)=f\left(x\right)\)
Ta có: \(F\left(x\right)=A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\)
\(\Rightarrow F'\left(x\right)=\dfrac{A\left(-3x^2\right)}{2\sqrt{1-x^3}}+B.\left(-\dfrac{\dfrac{1}{2\sqrt{x}}}{\left(1+\sqrt{x}\right)^2}\right)\)
\(\Rightarrow F'\left(x\right)=\dfrac{-3A}{2}.\dfrac{x^2}{\sqrt{1-x^3}}-\dfrac{B}{2}.\dfrac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^2}=f\left(x\right)\)
Đồng nhất hệ số ta được:
\(\left\{{}\begin{matrix}\dfrac{-3A}{2}=1\\\dfrac{-B}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\dfrac{-2}{3}\\B=-2\end{matrix}\right.\) \(\Rightarrow A+B=-\dfrac{8}{3}\)
Có x=a/m; y=b/m và x<y nên a/m<b/m ⇒a<b
Giả sử z>x là đúng thì\(\dfrac{a+b}{2m}>\dfrac{a}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{a}{m}>0\\ \Leftrightarrow\dfrac{a+b-2a}{2m}>0\Leftrightarrow\dfrac{b-a}{2m}>0\\ m\text{à}b>a;m>0n\text{ê}nz>xl\text{à}\text{đ}\text{úng (1)}\)Giả sử z<y là đúng thì
\(\dfrac{a+b}{2m}< \dfrac{b}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{b}{m}< 0\\ \Leftrightarrow\dfrac{a+b-2b}{2m}< 0\Leftrightarrow\dfrac{a-b}{2m}< 0\\ m\text{à}a< b;m>0n\text{ê}nz< yl\text{à}\text{đ}\text{úng (2)}\)
Từ (1)và(2) suy ra đpcm