Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có x = , y = ( a, b, m ∈ Z, m > 0)
Vì x < y nên ta suy ra a< b
Ta có : x = , y = ; z =
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Hãy chứng tỏ rằngGiả sử x = ; y = ( a, b, m Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z =∈ thì ta có x < z < yLời giải:Theo đề bài ta có x = , y = ( a, b, m Z, m > 0)∈Vì x < y nên ta suy ra a< bTa có : x = , y = ; z = Vì a < b => a + a < a +b => 2a < a + b
Ta có x=\(\frac{a}{m}=\frac{2a}{2m}\) , y=\(\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Có a<b =>2a<a+b (1)
Có a<b =>a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b =>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<y<z ( đpcm)
ta có: x<y hay \(\frac{a}{n}< \frac{b}{m}\Rightarrow a< b\)
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
\(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\) và \(z=\frac{\left(a+b\right)}{2m}\)
mà a<b
suy ra: a+a<b hay 2a<a+b
=> x<z (1)
mà a<b
suy ra: a+b<b+b hay a+b<2b
=> z<y (2)
từ (1) và (2) => x<z<y
vậy x<z<y
hpk tốt
Ta có:x=\(\frac{a}{m}\)<=>x=\(\frac{2a}{2m}\)
y=\(\frac{b}{m}=>y=\frac{2b}{2m}\)
z=\(\frac{\left(a+b\right)}{2m}\)
mà x<y nên a<b (với m>0)
=>a+a<a+b<b+b
hay 2a<a+b<2b
=>\(\frac{2a}{2m}
giả sử x=a/m, y=b/m(a,b ,m thuộc z, m>0)và x<y. Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
Ta có
\(x=\frac{a}{m}=\frac{2a}{2m}\) ; \(y=\frac{b}{m}=\frac{2b}{2m}\)
Vì a<b nên 2a<a+b (1)
Vì a<b nên a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b
=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<z<y ( đpcm)
Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)
Từ (1), Suy ra:
\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)
\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)
Từ (2);(3), ta có:
\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)
\(\Leftrightarrow x< z< y\left(đpcm\right)\)
Lạc đề rồi kìa