K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

ta có \(\left(a+b\right)^2\ge4ab\)   mà \(a+b=1\)

=>\(ab

25 tháng 10 2015

tick cho mình cái mình trả lời rồi mà.

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bài 1:

\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

--------------

\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)

\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bài 2:

Bạn tham khảo lời giải tương tự tại link sau:

Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến

18 tháng 8 2016

Ta có : \(a^2+b^2+2ab>1\)

Lại có \(a^2-2ab+b^2\ge0\)

Cộng hai vế bđt trên được \(2\left(a^2+b^2\right)>1\Rightarrow a^2+b^2>\frac{1}{2}\)

\(a^4+2a^2b^2+b^4>\frac{1}{4}\)

Lại có : \(a^4-2a^2b^2+b^4\ge0\)

Cộng hai vế bđt trên được \(2\left(a^4+b^4\right)>\frac{1}{4}\Rightarrow a^4+b^4>\frac{1}{8}\)

18 tháng 8 2016

Tương tự ta được:

\(\left(a+b\right)^2\ge4ab,a+b=1\)

\(\Rightarrow ab< \frac{1}{4}\Rightarrow a^2b^2< \frac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\Rightarrow a^4+b^4>2.\frac{1}{16}=\frac{1}{8}\)

NV
15 tháng 7 2020

a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)

\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)

Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

7 tháng 2 2020

Ta có: \(a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\ge\left(\frac{1}{2}\right)^2\)

Và: \(a^4-2a^2b^2+b^4=\left(a^2-b^2\right)^2\ge0\)

Và: \(2\left(a^4+b^4\right)\ge\frac{1}{4}\)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(đpcm\right)\)

Ta có \(a+b=1\Leftrightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\left(1\right)\)

Lại có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)

Cộng từng vế (1) và (2) ta được : \(2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\Leftrightarrow a^4+2a^2b^2+b^4\ge\frac{1}{4}\left(3\right)\)

Mặt khác: \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)

Cộng từng vế (3) và (4) ta được

\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Leftrightarrow a^4+b^4\ge\frac{1}{8}\)

Bđt được chứng minh

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm