Tìm phân số lớn nhất có dạng a/20 sao cho :
1/6 <a/20 < 1/2
GIẢI CHI TIẾT DÙM MK NHA!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 144=24.32
Bài 1 : ta có : 192=26.3 và 144=24.32
Vậy ƯCLN(144;192)=24.3=48
Vậy ƯC(144;192)={1;2;3;4;6;8;12;16;24;48}
Vậy các số cần tìm là : 24;48
Bài 2 :
84 chia hết cho a và 180 chia hết cho a mà a lớn nhất
=> a ϵ ƯCLN ( 84;180)
ta có : 84=22.3.7
180=22.32.5
Vậy ƯCLN(84;180)=22.3=12
Vậy a=12
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Theo đề bài ta có:
\(\frac{14}{15}\div\frac{a}{b}=\frac{14b}{75a}\in N\Leftrightarrow\hept{\begin{cases}14⋮a\\b⋮75\end{cases}}\)
\(\frac{6}{165}\div\frac{a}{b}=\frac{6b}{165a}\in N\Leftrightarrow\hept{\begin{cases}6⋮a\\b⋮165\end{cases}}\)
Để phân số tối giản \(\frac{a}{b}\) lớn nhất:
\(\Rightarrow\hept{\begin{cases}a=ƯCLN\left(6;14\right)=2\\b=BCNN\left(75;165\right)=825\end{cases}}\)
Vậy \(\frac{a}{b}=\frac{2}{825}\)
Vì a:20 dư 5
a:4 dư 1
a:7 dư 6
\(\Rightarrow a+15⋮20,4,7\)
\(\Rightarrow a+15\in BC\left(20;4;7\right)\)
\(20=2^2\cdot5;4=2^2;7=7\)
\(\Rightarrow BCNN\left(20;4;7\right)=2^2\cdot5\cdot7=140\)
\(\Rightarrow BC\left(20;4;7\right)=B\left(140\right)=\left(0;140;280;...\right)\)
\(a+15\in\left(0;140;280;...\right)\)
Mà a là số lớn nhất có 3 chữ số \(\Rightarrow a+15=980\)
\(\Rightarrow a=965\)
Vậy a=965
\(\frac{a}{20}\)=\(\frac{4}{20}\)
k mk nha
ta có: \(\frac{1}{6}< \frac{a}{20}< \frac{1}{2}\)
\(\Rightarrow\frac{10}{60}< \frac{3a}{60}< \frac{30}{60}\)
=> 10 < 3a < 30
Để a/20 lớn nhất
=> 3a/60 lớn nhất
=> 3a lớn nhất
=> 3a = 27 => a = 9