cho một hình tam giác ABC biết:
góc ABC= 60 độ
góc ACB= 70 độ
Tính góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=180-50-70=60 độ
b: Vì góc IBC=1/2*góc ABC
nên BI là phân giác của góc ABC
Vì góc ICB=1/2*góc ACB
nên CI là phân giác của góc ACB
c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có
BI chung
góc FBI=góc DBI
=>ΔBFI=ΔBDI
=>ID=IF
Xét ΔCDI vuông tại D và ΔCEI vuông tại E co
CI chung
góc DCI=góc ECI
=>ΔCDI=ΔCEI
=>ID=IE=IF
=>I là giao của 3 đường trung trực ΔDEF
Kẻ AH//BC
AH//BC
=>góc HAC=góc ACB=60 độ
AH//BC
=>góc HAB+góc B=180 độ(trong cùng phía)
=>góc HAB=180-70=110 độ
góc HAB=góc HAC+góc BAC
=>góc BAC=110-60=50 độ
Ta có: \(\widehat{ABC}=180^o-\left(70^o+50^o\right)=180^0-120^o=60^o\)
\(\Rightarrow\widehat{ACM}=\widehat{BCM}=30^o\)
\(\Rightarrow\widehat{BMN}=\widehat{BAC}+\widehat{MCA}=100^o\)
\(\Rightarrow\widehat{BMN}=180^o-\widehat{BMN}-\widehat{MBN}=40^o\)
\(\Rightarrow\widehat{BMN}=\widehat{MBN}\)
Kẻ \(MH\perp BC\)
\(\Rightarrow MK=\frac{1}{2}BN\)
\(\Delta MKB=\Delta BHM\left(ch-gn\right)\)( tự chứng minh )
\(\Rightarrow BK=MH\Rightarrow MC=BN\)hay \(BN=MC\)
Vậy BN = MC ( đpcm )
sin B=AH/AB
=>6/AB=sin60
=>\(AB=4\sqrt{3}\left(cm\right)\)
=>HB=2 căn 3(cm)
=>HC=8 căn 3(cm)
\(S_{AHC}=\dfrac{1}{2}\cdot8\sqrt{3}\cdot6=24\sqrt{3}\left(cm^2\right)\)
\(\widehat{ABC}=180^0-70^0-50^0=60^0\)
\(\Rightarrow\widehat{ACM}=\widehat{MCB}=30^0\)
\(\Rightarrow\widehat{NMB}=\widehat{BAC}+\widehat{ACM}=100^0\)
\(\Rightarrow\widehat{MNB}=180^0-\widehat{NMB}-\widehat{MBN}=40^0=\widehat{MBN}\)
từ M kẻ MH _|_ BC
\(\Rightarrow MK=\frac{1}{2}BN\) ( do sin \(30^0=\frac{1}{2}\) )
từ M kẻ MK_|_ BN
\(\Rightarrow MK=\frac{1}{2}BN\) ( do tam giác MBN cân tại M)
xét tam giác MKB và tam giác BHM ( cạnh huyền - góc nhọn)
=> BK=MH=>MC=BN(đpcm)
Có : ACB = 180 - 70 - 50 = 60 (độ)
=> ACM = MCB = 30 (độ)
=> NMB = BAC + ACM = 100 (độ)
=> MNB = 180 - NMB - MBN = 40 độ = MBN
Từ M kẻ MH vuông BC => MH = 1/2 MC (do sin 30 = 1/2)
Từ M kẻ MK vuông BN = MK = 1/2 BN (do tam giác MBN cân tại M)
Xét tam giác MKB = tam giác BHM (cạnh huyền - góc nhọn)
=> BK = MH => MC = BN
Có ABC = 180 - 70 - 50 = 60\(^o\)
=> ACM = MCB = 30\(^o\)
=> NMB = BAC + ACM = 100\(^o\)
=> MNB = 180 - NMB - MBN = 40\(^o\)= MBN
Từ M kẻ MH vuông BC => MH = \(\frac{1}{2}\)MC\((\)do sin 30 = \(\frac{1}{2}\)\()\)
Từ M kẻ MK vuông BN = MK = \(\frac{1}{2}\)BN\((\)do\(\Delta MBN\)cân tại M\()\)
Xét \(\Delta MKB=\Delta BHM\)\((\)cạnh huyền - góc nhọn \()\)
=> BK = MH => MC = BN
Xét ΔBIC có
\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)(Định lí tổng ba góc trong một tam giác)
nên \(\widehat{IBC}+\widehat{ICB}=50^0\)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=100^0\)
\(\Leftrightarrow\widehat{BAC}=80^0\)
\(\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{ACB}\right)\)
\(\widehat{BAC}=180^o-\left(60^o+70^o\right)\)
\(\widehat{BAC}=180^o-130^o\)
\(\widehat{BAC}=50^o\)
180-(60+70)=50
TỔNG CỦA MỘT TAM GIÁC = 180 ĐỘ