Cho x-y=-5. Tính: N=(x-y)^3-x^2+2xy-y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2
A = 73 + 2(x2 + 2xy + y2)
A = 343 + 2(x + y)2
A = 343 + 2. 72
A = 343 + 98 = 441
b) B = (x - y)3 - x2 + 2xy - y2
=> B = (-5)3 - (x2 - 2xy + y2)
=> B = -125 - (x - y)2
=> B = -125 - (-5)2
=> B = -125 - 25 = -150
b) N= (x-y)3-x2+2xy-y2=(x-y)3-(x2-2xy+y2)=(x-y)3-(x-y)2
thay x-y=5 vào N ta được: N= -53-52=-150
a) đề sai k vậy bạn?
\(N=\left(x-y\right)^3-x^2+2xy-y^2\\ =\left(-5\right)^3-\left(x^2-2xy+y^2\right)\\ =\left(-125\right)-\left(x-y\right)^2\\ =\left(-125\right)-\left(-5\right)^2=\left(-125\right)-25=\left(-150\right)\)
Ta có : N=(x-y)3 - x2+2xy-y2
N= (x-y)3 - (x2-2xy+y2)
N=(x-y)3 - (x-y)2
N=(-5)3 - (-5)2
N= -125 + 25
N= -100
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
P = x3 + y3 - x2 - y2 + 3xy( x + y ) - 2xy + 3( x + y ) + 10
= ( x3 + y3 ) - ( x2 + 2xy + y2 ) + 3xy( x + y ) + 3.5 + 10
= ( x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 ) - ( x + y )2 + 3xy( x + y ) + 15 + 10
= [ ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 ) ] - 52 + 3xy( x + y ) + 25
= ( x + y )3 - 3xy( x + y ) - 25 + 3xy( x + y ) + 25
= 53 = 125
Ta có : \(x^2+2x+y^2-2y-2xy+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
Mà \(x=y+5\)
\(\Rightarrow x-y=5\)
- Thay x - y = 5 vào đa thức trên ta được :
\(=\left(x-y\right)^2+2\left(x-y\right)+65=100\)
Vậy ...
Ta có : \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(N=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(N=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay \(x-y=-5\)vào ta được :
\(N=\left(-5\right)^3-\left(-5\right)^2\)
\(N=-125-25\)
\(N=-150\)
Vậy \(N=-150\)với \(x-y=-5\)