K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hệ thức vi ét và biệt thức denta để làm gì hả bạn ?

do`  bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm , 

25 tháng 7 2018

Mình ngu thiệt mà, giúp mình đi. Mình làm mà thấy kết quả kì kì. Cao nhân xin giúp đỡ 

13 tháng 5 2019

Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6

= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8

⇒ A = m - 2 2 - 12 ≥ 12

Suy ra  m i n   A = - 12 ⇔ m = 2

m = 2 thỏa mãn (*)

Vậy với  m = 2  thì biểu thức A đạt giá trị nhỏ nhất.

Đáp án cần chọn là: A

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

21 tháng 12 2019

Đáp án: B

16 tháng 6 2021

x23 hay x22?

16 tháng 6 2021

mũ 3 bọn ạ đề của bọn mình ghi vậy 

17 tháng 4 2016

\(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}\)

\(=\sqrt{\left(2m\right)^2-4\left(-2m-5\right)}=\sqrt{4m^2+8m+20}=\sqrt{4\left(m+1\right)^2+16}\)

\(\ge\sqrt{16}=4\)

Đối chiếu \(m+1=0\Leftrightarrow m=-1\) với điều kiện có 2 nghiệm phân biệt của phương trình rồi kết luận.

7 tháng 3 2018

Đáp án A

23 tháng 1 2022

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)

\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)

Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)

Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4m^2+2m^2-4m+3=6m^2-4m+4\)

bạn kiểm tra lại đề xem có vấn đề gì ko ? 

NV
23 tháng 1 2022

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=\left(2m\right)^2+2m^2-4m+3\)

\(=6m^2-4m+3\)

Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)

\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)

NV
9 tháng 5 2020

\(\Delta'=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)

\(A=x_1x_2-\left(x_1+x_2\right)\)

\(=m^2-3m+1\)

Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề

9 tháng 5 2020

Uk đó là min