Cho tam giác đều ABC vuông tại A, đường cao AH. Tính tỉ số lượng giác của góc ABH và HAB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\widehat{B}=120^0\) nên đường cao AH ứng với cạnh BC sẽ nằm ngoài tam giác ABC
Ta có: \(\widehat{ABH}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABH}+120^0=180^0\)
hay \(\widehat{ABH}=60^0\)
Xét ΔABH vuông tại H có
\(\widehat{ABH}=60^0\)(cmt)
nên \(\sin\widehat{ABH}=\dfrac{\sqrt{3}}{2}\); \(\cos\widehat{ABH}=\dfrac{1}{2}\); \(\tan\widehat{ABH}=\sqrt{3}\); \(\cot\widehat{ABH}=\dfrac{\sqrt{3}}{3}\)
Xét ΔABH vuông tại H có
\(\widehat{BAH}=30^0\)
nên \(\sin\widehat{BAH}=\dfrac{1}{2}\); \(\cos\widehat{BAH}=\dfrac{\sqrt{3}}{2}\); \(\tan\widehat{BAH}=\dfrac{\sqrt{3}}{3}\); \(\cot\widehat{BAH}=\sqrt{3}\)
Ta có: \(\widehat{HCA}+\widehat{ABH}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{HCA}=\widehat{HAB}\)
mà \(\widehat{KCA}=\dfrac{\widehat{HCA}}{2}\)(CK là tia phân giác của \(\widehat{HCA}\))
và \(\widehat{KAB}=\dfrac{\widehat{HAB}}{2}\)(AK là tia phân giác của \(\widehat{HAB}\))
nên \(\widehat{KCA}=\widehat{KAB}\)(đpcm)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
\(sinABH=\frac{AH}{AB}\) \(cosABH=\frac{BH}{AB}\)
\(tanABH=\frac{AH}{BH}\) \(cotABH=\frac{BH}{AH}\)
\(sinHAB=\frac{BH}{AB}\) \(cosHAB=\frac{AH}{AB}\)
\(tanHAB=\frac{BH}{AH}\) \(cotHAB=\frac{AH}{BH}\)
\(\sin ABH=\frac{AH}{AB}\) \(\cos ABH=\frac{BH}{AB}\)
\(\tan ABH=\frac{AH}{BH}\) \(\cot ABH=\frac{BH}{AH}\)
\(\sin HAB=\frac{BH}{AB}\) \(\cos HAB=\frac{AH}{AB}\)
\(\tan HAB=\frac{BH}{AH}\) \(\cot HAB=\frac{AH}{BH}\)
Sorry ko vẽ đc hình
Code : Breacker