Chứng minh rằng nếu: \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}\) trong đó a + b + c + d ≠ 0 thì a = c.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Từ \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
\(\Rightarrow ad+a^2+bd+ba=bc+bd+c^2+cd\)
\(\Rightarrow a^2+a\left(b+d\right)=c^2+c\left(b+d\right)\)
Vì đt trên bằng nhau : \(\Rightarrow a\left(b+d\right)=c\left(b+d\right)\Leftrightarrow a=c\)
Thanks ạ ^^