K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(\left(xy+4ab\right)^2+4\left(ay-bx\right)^2\)

\(=x^2y^2+2xy.4ab+4^2a^2b^2+4\left(a^2y^2-2aybx+b^2x^2\right)\)

\(=x^2y^2+8aybx+16a^2b^2+4a^2y^2-8aybx+4b^2x^2\)

\(=x^2y^2+16a^2b^2+4a^2y^2+4b^2x^2\)

\(=\left(x^2y^2+4b^2x^2\right)+\left(16a^2b^2+4a^2y^2\right)\)

\(=x^2\left(y^2+4b^2\right)+4a^2\left(4b^2+y^2\right)\)

\(=\left(y^2+4b^2\right)\left(x^2+4a^2\right)\)

\(=x^2y^2+8xyab+16a^2b^2+4a^2y^2-8xyab+4b^2x^2\)

\(=x^2y^2+4a^2y^2+4b^2x^2+16a^2b^2\)

\(=\left(x^2y^2+4b^2x^2\right)+\left(4a^2y^2+16a^2b^2\right)\)

\(=x^2\left(4b^2+y^2\right)+4a^2\left(y^2+4b^2\right)\)

\(=\left(4b^2+y^2\right)\left(x^2+4a^2\right)\)

 

17 tháng 7 2018

\(\left(xy+4ab\right)^2+4\left(ay-bx\right)^2\)

\(=x^2y^2+8abxy+16a^2b^2+4a^2y^2-8abxy+4b^2x^2\)

\(=x^2y^2+16a^2b^2+4a^2y^2+4b^2x^2\)

\(=\left(x^2y^2+4b^2x^2\right)+\left(16a^2b^2+4a^2y^2\right)\)

\(=x^2\left(y^2+4b^2\right)+4a^2\left(4b^2+y^2\right)\)

\(=\left(x^2+a^2\right)\left(4b^2+y^2\right)\)

15 tháng 7 2018

1)) 3xy(a2+b2)-ab(x2+9y2) = 3a2xy+3b2xy-x2ab-9y2ab=(3a2xy-x2ab)+(3b2xy-9y2ab)=ax(3ay-xb)+3by(3ay-xb)=(ax+3by)(3ay-xb)

\(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(3x-2\right)\)

Đề sai rồi bạn phải + 2 chứ

6 tháng 8 2018

1) \(xy\left(a^2+2b^2\right)-ab\left(2x^2+y^2\right)\)

\(=a^2xy+2b^2xy-2abx^2-aby^2\)

\(=\left(a^2xy-aby^2\right)+\left(2b^2xy-2abx^2\right)\)

\(=ay\left(ax-by\right)+2bx\left(by-ax\right)\)

\(=ay\left(ax-by\right)-2bx\left(ax-by\right)\)

\(=\left(ax-by\right)\left(ay-2bx\right)\)

2) Sửa đề \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)

\(=\left(xy\right)^2+2xyab+\left(ab\right)^2+\left(bx\right)^2-2xyab+\left(ay\right)^2\)

\(=x^2y^2+a^2b^2+b^2x^2+a^2y^2\)

\(=\left(x^2y^2+b^2x^2\right)+\left(a^2b^2+a^2y^2\right)\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)

3) \(\left(2xy+ab\right)^2+\left(2ay-bx\right)^2\)

\(=\left(2xy\right)^2+2.2xyab+\left(ab\right)^2+\left(2ay\right)^2-2.2xyab+\left(bx\right)^2\)

\(=4x^2y^2+4xyab+a^2b^2+4a^2y^2-4xyab+b^2x^2\)

\(=4x^2y^2+4a^2y^2+a^2b^2+b^2x^2\)

\(=4y^2\left(x^2+a^2\right)+b^2\left(a^2+x^2\right)\)

\(=\left(a^2+x^2\right)\left(4y^2+b^2\right)\)

6 tháng 8 2018

1) \(xy\left(a^2+2b^2\right)-ab\left(2x^2+y^2\right)\)

\(=a^2xy+2b^2xy-2x^2ab-y^2ab\)

\(=\left(a^2xy-y^2ab\right)+\left(2b^2xy-2x^2ab\right)\)

\(=ay\left(ax-by\right)+2bx\left(by-ax\right)\)

\(=ay\left(ax-by\right)-2bx\left(ax-by\right)\)

\(=\left(ax-by\right)\left(ay-2bx\right)\)

2) Sửa đề \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)

\(=\left(xy\right)^2+2xyab+\left(ab\right)^2+\left(bx\right)^2-2xyab+\left(ay\right)^2\)

\(=x^2y^2+a^2b^2+b^2x^2+a^2y^2\)

\(=\left(x^2y^2+b^2x^2\right)+\left(a^2b^2+a^2y^2\right)\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(b^2+y^2\right)\left(a^2+x^2\right)\)

3) \(\left(2xy+ab\right)^2+\left(2ay-bx\right)^2\)

\(=\left(2xy\right)^2+2.2xyab+\left(ab\right)^2+\left(2ay\right)^2-2.2xyab+\left(bx\right)^2\)

\(=4x^2y^2+a^2b^2+4a^2y^2+b^2x^2\)

\(=\left(4x^2y^2+b^2x^2\right)+\left(4a^2y^2+a^2b^2\right)\)

\(=x^2\left(4y^2+b^2\right)+a^2\left(4y^2+b^2\right)\)

\(=\left(4y^2+b^2\right)\left(a^2+x^2\right)\)

23 tháng 8 2020

1.  \(xy\left(a^2+2b^2\right)-ab\left(2x^2+y^2\right)\)

\(=xya^2+2xyb^2-2abx^2-aby^2\)

\(=xya^2-aby^2-2abx^2+2xyb^2\)

\(=ay\left(ax-by\right)-2bx\left(ax-by\right)\)

\(=\left(ay-2bx\right)\left(ax-by\right)\)

2. \(xy\left(a^2+2b^2\right)+ab\left(2x^2+y^2\right)\)

\(=xya^2+2xyb^2+2abx^2+aby^2\)

\(=xya^2+aby^2+2abx^2+2xyb^2\)

\(=ay\left(ax+by\right)+2bx\left(ax+by\right)\)

\(=\left(ay+2bx\right)\left(ax+by\right)\)