K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

Đặt \((\sqrt{1+x}=a; \sqrt{1-x}=b)\)

\(\Rightarrow a^2+b^2=2\)\(a^2-b^2=2x\)

Khi đó:

\(M=\frac{\sqrt{1+ab}(a^3-b^3)}{2+ab}=\frac{\sqrt{1+ab}(a-b)(a^2+ab+b^2)}{a^2+b^2+ab}\)

\(=\sqrt{1+ab}(a-b)\)

\(=\sqrt{\frac{a^2+b^2}{2}+ab}(a-b)=\sqrt{\frac{a^2+b^2+2ab}{2}}(a-b)\)

\(=\sqrt{\frac{(a+b)^2}{2}}(a-b)=\frac{(a+b)(a-b)}{\sqrt{2}}=\frac{a^2-b^2}{\sqrt{2}}=\frac{2x}{\sqrt{2}}=\sqrt{2}x\)

15 tháng 7 2018

\(M=\dfrac{\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)

\(\Leftrightarrow M=\dfrac{\sqrt{2}.\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)

\(\Leftrightarrow M=\dfrac{\sqrt{2+2\sqrt{1-x^2}}\left[(\sqrt{\left(1+x\right)})^3-(\sqrt{\left(1-x\right)})^3\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)

\(\Leftrightarrow M=\dfrac{\sqrt{\left(1-x\right)+2\sqrt{\left(1-x\right)\left(1+x\right)}+(1+x)}.\left[(\sqrt{1+x})^3-\left(\sqrt{1-x}\right)^3\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)

\(\Leftrightarrow M=\dfrac{\sqrt{(\sqrt{1+x}+\sqrt{1-x})^2}.\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(\sqrt{1+x}\right)^2+\sqrt{1+x}\sqrt{1-x}+\left(\sqrt{1-x}^2\right)\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)

\(\Leftrightarrow M=\dfrac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[1+x+\sqrt{1-x^2}+1-x\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)

\(\Leftrightarrow M=\dfrac{(1+x-1+x)\left[2+\sqrt{1-x^2}\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)

\(\Leftrightarrow M=\dfrac{2x}{\sqrt{2}}\)

\(\Leftrightarrow M=\sqrt{2}x\)

16 tháng 7 2018

ĐKXĐ : \(x\ne0\)

Câu a :

\(A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\left|\dfrac{x^2+3}{x}\right|+\left|x-2\right|\)

\(=\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\)

Câu b :

Để \(A\in Z\Leftrightarrow\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\in Z\)

\(\Leftrightarrow\dfrac{3}{x}\in Z\) ( Vì \(x^2⋮x\) )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-1\\x=1\\x=3\end{matrix}\right.\)

Vậy \(x=-3;x=-1;x=1;x=3\) thì A đạt giá trị nguyên .

Chúc bạn học tốt !!

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)

b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)

5 tháng 2 2022

a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

b, với x > 0 

\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)

\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

1: \(1+\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}=1+\sqrt{x-1}\)

2: \(A=\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)

=\(\left|x-2\right|+\dfrac{x-2}{\left|x-2\right|}\)

TH1: x>2

A=x-2+(x-2)/(x-2)=x-2+1=x-1

TH2: x<2

A=2-x+(x-2)/(2-x)=2-x-1=1-x

3: \(C=\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)

\(=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}\)

\(=\sqrt{m}-\left|\sqrt{m}-1\right|\)

TH1: m>=1

\(C=\sqrt{m}-\sqrt{m}+1=1\)

TH2: 0<=m<1

\(C=\sqrt{m}+\sqrt{m}-1=2\sqrt{m}-1\)

27 tháng 4 2023

loading...  

27 tháng 4 2023

Thaknks

 

17 tháng 10 2023

3:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)

\(M=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}\)

\(=\dfrac{6}{3\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\)

b: M>1/3

=>M-1/3>0

=>\(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{3}>0\)

=>\(\dfrac{6-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)

=>\(3-\sqrt{x}>0\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

c: \(\sqrt{x}+3>=3\) với mọi x thỏa mãn ĐKXĐ

=>\(M=\dfrac{2}{\sqrt{x}+3}< =\dfrac{2}{3}\) với mọi x thỏa mãn ĐKXĐ

Dấu = xảy ra khi x=0

17 tháng 10 2023

bn bt làm câu 2 ko ạ giúp mik với 

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2: Ta có: \(A=\left(\dfrac{x+2\sqrt{x}}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)

3: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)