K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

Gọi độ dài cạnh góc vuông thứ nhất là x(cm)

=>Độ dài cạnh góc vuông thứ hai là x+4(cm)

Độ dài cạnh huyền là 8cm nên ta có: \(x^2+\left(x+4\right)^2=8^2\)

=>\(x^2+x^2+8x+16-64=0\)

=>\(2x^2+8x-48=0\)

=>\(x^2+4x-24=0\)

=>\(x^2+4x+4-28=0\)

=>\(\left(x+2\right)^2=28\)

=>\(\left[{}\begin{matrix}x+2=2\sqrt{7}\\x+2=-2\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{7}-2\left(nhận\right)\\x=-2\sqrt{7}-2\left(loại\right)\end{matrix}\right.\)

Độ dài cạnh góc vuông thứ hai là:

\(2\sqrt{7}-2+4=2\sqrt{7}+2\left(cm\right)\)

Diện tích tam giác vuông ABC là:

\(\dfrac{1}{2}\left(2\sqrt{7}-2\right)\left(2\sqrt{7}+2\right)\)

\(=\dfrac{1}{2}\left(28-4\right)\)

\(=\dfrac{1}{2}\cdot24=12\left(cm^2\right)\)

6 tháng 4 2021

ko biết làm giúp bạn này với

3 tháng 9 2020

a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC

Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)

Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\) 

b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé

2 tháng 6 2015

nhầm sửa lại :

 

Cạnh góc vuông còn lại là 21 – x (cm)

Ta có phương trình : 1/2 .x(21 - x) = 54 <=> -x^2 + 21x -108 =0<=> x = 12 và x = 9

=> Độ dài 2 cạnh góc vuông là 12cm và 9 cm 

=>độ dài cạnh huyền là \(\sqrt{12^2+9^2}\)=15(cm)

 

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5