Cho : P = \(\dfrac{ax^2+bx+c}{dx^2+ex+f}\) . Cm nếu \(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}\) thì P không phụ thuộc vào x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}=k\)
\(\Rightarrow a=dk;b=ek;c=fk;d=ak;e=bk;f=ck\)
Thay vào P ta có:
\(P=\frac{dkx^2+ekx+fk}{dx^2+ex+f}=\frac{k.\left(dx^2+ex+f\right)}{dx^2+ex+f}=k\)
Vậy nếu \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\)thì P không phụ thuộc vào x
Nếu \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\) thì đặt \(\frac{a}{d}=\frac{b}{e}=\frac{c}{f}=k\)
\(\Rightarrow\hept{\begin{cases}a=dk\\b=ek\\c=fk\end{cases}}\).Thế vào \(P=\frac{dk.x^2+ek.x+fk}{dx^2+ex+f}=\frac{k.dx^2+k.ex+k.f}{dx^2+ex+f}=\frac{k\left(dx^2+ex+f\right)}{dx^2+ex+f}=k\)
Vạy P không phụ thuộc vào x
ta đặt \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=k\)
suy ra: a=a'k; b=b'k; c=c'k
thay vào biểu thức P ta được:
\(\dfrac{a'kx^2+b'kx+c'k}{a'x^2+b'x+c'x}=\dfrac{k\left(a'x^2+b'x+c'\right)}{a'x^2+b'x+c'}=k\)
vậy nếu \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) thì biểu thức P không phụ thuộc vào x
a: f(0)=5
=>a*0^2+b*0+c=5
=>c=5
f(1)=1
=>a*1+b*1+1=5
=>a+b=4
f(5)=0
=>25a+5b+1=0
=>25a+5b=-1
mà a+b=4
nên a=-21/20; b=101/20
(P): y=-21/20x^2+101/20x+5
b: f(-1)=-21/20-101/20+5=-11/10<>3
=>D ko thuộc (P)
f(1/2)=-21/20*1/4-101/20*1/2+5=177/80<>9/4
=>E ko thuộc (P)
c: y=-3
=>-21/20x^2+101/20x+8=0
=>x=6,06 hoặc x=-1,26
a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)
\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)
b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)
\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)
\(\dfrac{ax^2+bx^2+c}{a1x^2+b1x^2+c1}\)= \(\dfrac{ax^2}{a1x^2}=\dfrac{bx^2}{b1x^2}=\dfrac{c}{c1}\)
=\(\dfrac{a}{a1}=\dfrac{b}{b1}=\dfrac{c}{c1}\)
\(\Rightarrow x^2\) đã bị rút gọn nên ko ảnh hưởng gì đến giá trị P
Đặt :
\(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=dk\\b=ek\\c=fk\end{matrix}\right.\)
\(\Leftrightarrow P=\dfrac{ax+bx+c}{dx^2+ẽx+f}=\dfrac{dkx^2+ekx+fk}{dx^2+ex+f}=\dfrac{k\left(dx^2+ex+f\right)}{dx^2+ex+f}=k\)
Vậy nếu \(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}\) thì P k phụ thuộc vào x