Giải f'(x) = g(x)
a, F(x) = sin32x ; g(x) = 4cos2x – 5sin4x
b, f(x) = 2x2cos2(x/2) ; g(x) = x – x2 sin x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(f\left(0\right)=a.0+b=b=3\)
\(f\left(1\right)=a+b=-5\)
\(\Leftrightarrow a=\left(a+b\right)-b=-5-3=-8\)
Vậy a = -8 ; b = 3
b ) \(f\left(1\right)=a+b=5\)
\(f\left(-1\right)=-a+b=2\)
Cộng vế với vế của f(1) và f(-1) ta được :
(a + b) + (- a + b) = 5 + 2
<=> 2b = 7 => b = 3,5
=> a + 3.5 = 5 => a = 1,5
Vậy a = 1,5 ; b = 3,5
a) f(0) = 3
\(\Rightarrow f\left(0\right)=a\times0+b=0+b=b=3\)
\(\Rightarrow b=3\)
f(1) = 5
\(\Rightarrow f\left(1\right)=a\times1+b=a+3=-5\)
\(\Rightarrow a=\left(-5\right)-3=-8\)
Vậy a = -8; b = 3
b)
f(1) = 5
\(\Rightarrow f\left(1\right)=a\times1+b=a+b=5\) (*)
\(\Rightarrow a+b=5\)
f(-1) = 2
\(\Rightarrow f\left(-1\right)=a\times\left(-1\right)+b=\left(-a\right)+b=b-a=2\)
\(\Rightarrow b-a=2\) (**)
Từ (*) và (**) ta có:
\(a=\left(5-2\right)\div2=\frac{3}{2}\) (Tổng, hiệu của lớp 5)
\(b=5-\frac{3}{2}=\frac{7}{2}\)
Vậy \(a=\frac{3}{2};b=\frac{7}{2}\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
f(x) = ax^2 + bx + cf(1) = a + b + cf(-1) = a - b - cVì f(1) = f(-1) => a + b + c = a - b - c=> b = -b=> b = 0Vậy f(x) = ax^2 + bx + c = ax^2 + cf(-x) = a(-x)^2 + 0 + c = ax^2 + c=> f(x) = f(-x)
Có : \(f\left(-1\right)=f\left(1\right)\)
\(\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=a.1^2+b.1+c\)
\(\Leftrightarrow a-b+c=a+b+c\)
\(\Leftrightarrow b=0\)
Khi đó \(f\left(x\right)=\) \(a.x^2+c\) và \(f\left(-x\right)=a.\left(-x\right)^2+c=a.x^2+c\)
Do vậy \(f\left(x\right)=f\left(-x\right)\)
ta có:f(0)=a*0^2+b*0+c=6\(\Rightarrow\) c=6
f(1)=a*1^2+b*1+c=12\(\Rightarrow\)a*1^2+b*1=6\(\Rightarrow\)a+b=6
f(1)=a*(-1)^2+b*(-1)+c=2\(\Rightarrow\)a*1^2+b*1=-4\(\Rightarrow\)a-b=-4
=> a=1;b=5
vậy a=1;b=5;c=6
+) Với x = 2 ta có: f(2) + 2f(0) = 2.3
f(2) + 2f(0) = 6 (1)
+) Với x = 0 ta có: f(0) + 2f(2) = 0.3
f(0) + 2f(2) = 0
=> 2f(0) + 4f(2) = 0 (2)
Lấy (1) trừ (2) ta có:
-3f(2) = 6
=> f(2) = -2
f(x1)+f(x2)= (2.x1+3)+(2.x2+3)=2.(x1+x2)+6=2.5+6=16
Bấm đúng nhé
\(f\left(0\right)=c=8\)
\(f\left(1\right)=a+b+c=a+b+8=9\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=a-b+c=a-b+8=-11\Rightarrow a-b=-19\) (2)
-Từ (1) và (2) suy ra: \(a=-9;b=10\)
f(0)=c=8f(0)=c=8
f(1)=a+b+c=a+b+8=9⇒a+b=1f(1)=a+b+c=a+b+8=9⇒a+b=1 (1)
f(−1)=a−b+c=a−b+8=−11⇒a−b=−19f(−1)=a−b+c=a−b+8=−11⇒a−b=−19 (2)
-Từ (1) và (2) suy ra: a=−9;b=10
a) \(f'(x)=g(x)\)
\(\Leftrightarrow 6\sin ^22x\cos 2x=4\cos 2x-5\sin 4x\)
\(\Leftrightarrow 3\sin ^22x\cos 2x=2\cos 2x-5\sin 2x\cos 2x\)
\(\Leftrightarrow \cos 2x(3\sin ^22x-2+5\sin 2x)=0\)
\(\Leftrightarrow \cos 2x(3\sin 2x-1)(\sin 2x+2)=0\)
\(\Rightarrow \left[\begin{matrix} \cos 2x=0\\ \sin 2x=\frac{1}{3}\\ \sin 2x=-2\end{matrix}\right.\)
Với \(\cos 2x=0\Rightarrow x=\frac{\pm \pi}{4}+k\pi (k\in\mathbb{Z})\)
Với \(\sin 2x=\frac{1}{3}\Rightarrow x=\frac{1}{2}\arcsin \frac{1}{3}+k\pi \) hoặc \(x=\pi -\frac{1}{2}\arcsin \frac{1}{3}+k\pi\)
Với \(\sin 2x=-2\) thì loại vì $\sin 2x\in [-1;1]$
b) \(f'(x)=g(x)\)
\(\Leftrightarrow -x^2\sin x+4x\cos ^2\frac{x}{2}=x-x^2\sin x\)
\(\Leftrightarrow 4x\cos ^2\frac{x}{2}=x\)
\(\Leftrightarrow x(4\cos ^2\frac{x}{2}-1)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ \cos ^2\frac{x}{2}=\frac{1}{4}\rightarrow \cos \frac{x}{2}=\pm \frac{1}{2}\end{matrix}\right.\)
Với \(\cos \frac{x}{2}=\frac{1}{2}\Rightarrow x=\pm \frac{2\pi}{3}+4k\pi \) với $k$ nguyên.
Với \(\cos \frac{x}{2}=\frac{-1}{2}\Rightarrow x=\frac{-4\pi}{3}+4k\pi \) với $k$ nguyên.