CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Nhân chéo
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
\(\Rightarrowđpcm\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)
\(=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)
\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
BÀI 1:
\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)
\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky
Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có VT:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)
\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)
VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Vậy...
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)
\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)
=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)
=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0
Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y
cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c
ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a
Vậy x/a=y/b=c/z
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\) (theo đề bài)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
Vậy \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}.\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
\(\Rightarrow dpcm\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
Vậy \(\dfrac{a}{b}=\dfrac{c+c}{b+d}\left(đpcm\right)\)