K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Vậy \(\dfrac{a}{b}=\dfrac{c+c}{b+d}\left(đpcm\right)\)

16 tháng 8 2017

Bài 1: Nhân chéo

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

\(\Rightarrowđpcm\)

16 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)

\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)

\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)

\(=\dfrac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow c=-c\)

\(\Rightarrow c+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)

\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

12 tháng 7 2017

BÀI 1:

\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)

\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky

Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)

12 tháng 7 2017

Bài 2:

Vì a=b+c nên ad=(b+c)d=bd+cd (1)

Vi c=\(\dfrac{bd}{b-d}\)nen \(bd=\)c.(b-d)=bc-cd hay bc=bd+cd (2)

Từ (1),(2) =>ad=bc=>\(\dfrac{a}{b}=\dfrac{c}{d}\)

9 tháng 8 2023

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có VT:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)

\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)

VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) 

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

9 tháng 8 2023

Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

Vậy...

30 tháng 10 2021

Nhanh nha gianroi

30 tháng 10 2021

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

17 tháng 12 2022

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)

\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)

=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)

b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)

=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

18 tháng 10 2017

bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0

Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y

cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c

ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a

Vậy x/a=y/b=c/z

1 tháng 11 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\) (theo đề bài)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Vậy \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}.\)

1 tháng 11 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

27 tháng 8 2023

a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)

 \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

\(\Rightarrow dpcm\)

27 tháng 8 2023

Thanks