Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Nhân chéo
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
\(\Rightarrowđpcm\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)
\(=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)
\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
BÀI 1:
\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)
\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky
Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)
bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0
Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y
cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c
ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a
Vậy x/a=y/b=c/z
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\) (theo đề bài)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
Vậy \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}.\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )
\(\Rightarrow\) \(a=b.k\)
\(c=d.k\)
Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)
\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b,
, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )
\(\Rightarrow\) \(a=b.k\)
\(c=d.k\)
Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)
\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Vì \(a+b+c+d\ne0\) nên áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\) \(\Rightarrow a=b=c=d\) (1)
Thay (1) vào P, ta có:
\(P=\dfrac{2a-a}{a+a}+\dfrac{2a-a}{a+a}+\dfrac{2a-a}{a+a}=\dfrac{2a-a}{a+a}\)
\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
Vậy P = 2
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=k\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{a}=k^4\)
\(\Rightarrow k=\pm1\)
- Với \(k=1\) :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
\(\Rightarrow a=b=c=d\)
- Với \(k=-1\) :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=-1\)
\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-d\\d=-a\end{matrix}\right.\)
\(\Rightarrow a=-b=c=-d\)
\(\Rightarrow P=\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}+\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}\)
\(\Rightarrow P=4\)
Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow \left\{\begin{matrix} a=bk\\ c=dk\end{matrix}\right.\)
Khi đó:
\(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3(bk)^2+(dk)^2}{3b^2+d^2}=\frac{k^2(3b^2+d^2)}{3b^2+d^2}=k^2(1)\)
Và: \(\frac{(a+c)^2}{(b+d)^2}=\frac{(bk+dk)^2}{(b+d)^2}=\frac{k^2(b+d)^2}{(b+d)^2}=k^2(2)\)
Từ \((1); (2)\Rightarrow \frac{3a^2+c^2}{3b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Nhã Doanh; ngonhuminh; nguyen thi vang; Nguyễn Thanh Hằng;
Hoàng Anh Thư; Mashiro Shiina; Akai Haruma; F.C; Trần Thị Hồng Ngát; Phạm Nguyễn Tất Đạt ơi!!!!!!!!!!!!!!
Giúp mk với, mk sẽ tick cho tất cả các bạn
Cảm ơn các bạn nhiều nha
C) đúng. Vì
\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{c}{a}=\dfrac{d}{b}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
Vậy \(\dfrac{a}{b}=\dfrac{c+c}{b+d}\left(đpcm\right)\)