\(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}.\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Vậy \(\dfrac{a}{b}=\dfrac{c+c}{b+d}\left(đpcm\right)\)

16 tháng 8 2017

Bài 1: Nhân chéo

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

\(\Rightarrowđpcm\)

16 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)

\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)

\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)

\(=\dfrac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow c=-c\)

\(\Rightarrow c+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)

\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

12 tháng 7 2017

BÀI 1:

\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)

\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky

Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)

12 tháng 7 2017

Bài 2:

Vì a=b+c nên ad=(b+c)d=bd+cd (1)

Vi c=\(\dfrac{bd}{b-d}\)nen \(bd=\)c.(b-d)=bc-cd hay bc=bd+cd (2)

Từ (1),(2) =>ad=bc=>\(\dfrac{a}{b}=\dfrac{c}{d}\)

18 tháng 10 2017

bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0

Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y

cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c

ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a

Vậy x/a=y/b=c/z

1 tháng 11 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\) (theo đề bài)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Vậy \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}.\)

1 tháng 11 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

21 tháng 5 2017

a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b,

, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

2 tháng 12 2017

\(a+b+c+d\ne0\) nên áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\) \(\Rightarrow a=b=c=d\) (1)

Thay (1) vào P, ta có:

\(P=\dfrac{2a-a}{a+a}+\dfrac{2a-a}{a+a}+\dfrac{2a-a}{a+a}=\dfrac{2a-a}{a+a}\)

\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)

Vậy P = 2

2 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=k\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{a}=k^4\)

\(\Rightarrow k=\pm1\)

- Với \(k=1\) :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)

\(\Rightarrow a=b=c=d\)

- Với \(k=-1\) :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=-1\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-d\\d=-a\end{matrix}\right.\)

\(\Rightarrow a=-b=c=-d\)

\(\Rightarrow P=\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}+\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}\)

\(\Rightarrow P=4\)

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow \left\{\begin{matrix} a=bk\\ c=dk\end{matrix}\right.\)

Khi đó:

\(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3(bk)^2+(dk)^2}{3b^2+d^2}=\frac{k^2(3b^2+d^2)}{3b^2+d^2}=k^2(1)\)

Và: \(\frac{(a+c)^2}{(b+d)^2}=\frac{(bk+dk)^2}{(b+d)^2}=\frac{k^2(b+d)^2}{(b+d)^2}=k^2(2)\)

Từ \((1); (2)\Rightarrow \frac{3a^2+c^2}{3b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

9 tháng 3 2018

Nhã Doanh; ngonhuminh; nguyen thi vang; Nguyễn Thanh Hằng;

Hoàng Anh Thư; Mashiro Shiina; Akai Haruma; F.C; Trần Thị Hồng Ngát; Phạm Nguyễn Tất Đạt ơi!!!!!!!!!!!!!!

Giúp mk với, mk sẽ tick cho tất cả các bạn

Cảm ơn các bạn nhiều nha

3 tháng 5 2017

C) đúng. Vì

\(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

=>\(\dfrac{c}{a}=\dfrac{d}{b}\)

18 tháng 4 2017

Đáp án C là đúng, vì ad = bc