K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIBM vuông tại I và ΔABC vuông tại A có

góc B chung

Do đo: ΔIBM đồng dạng với ΔABC

b: Xét ΔCIN vuông tại I và ΔCAB vuông tại A có

góc C chung

DO đo: ΔCIN đồng dạng với ΔCAB

Suy ra: CI/CA=CN/CB

hay \(CI\cdot CB=CA\cdot CN\)

 

a: Xét ΔCMI vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMI đồng dạng với ΔCAB

b: BC=căn 5^2+12^2=13cm

CM=13/2=6,5cm

ΔCMI đồng dạng với ΔCAB

=>MI/AB=CM/CA

=>MI/5=6,5/12=13/24

=>MI=65/24(cm)

2 tháng 2 2019

B=(2.4.10+4.6.8+14.16.20)/(3.6.15+6.9.12+21.24.30)

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBMI đồng dạng với ΔBAC

=>BM/BA=BI/BC

=>BM*BC=BA*BI

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.a.Cm DE//BCb.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=ENc.Cm tam giác AMN là tam giác când.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt...
Đọc tiếp

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.

a.Cm DE//BC

b.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=EN

c.Cm tam giác AMN là tam giác cân

d.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.

2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC ở M .Trên tia đối của tia AM lấy điểm N sao cho AN=BM.CMR:

a. góc AMC=gócBAC

b.Tam giác ABM =tam giác CAN 

c.Tam giác MNC vuông góc cân ở C 

3.Cho đoạn thẳng AB và điểm C nằm giữa A và  B.Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE ,Gọi M,N lần lượt  là trung điểm của AE và BD .CMR:

a. AE=BD

b. Tam giác CME=tam giác CNB

c. Tam giác MNE là tam giác đều

4.Cho tam giác ABC vuông cân tại A .Trên cạnh AB lấy điểm D,trên cạnh AC lấy điểm E sao cho AD=AE.Các đoạn thẳng vuông goác kẻ từ A và E với CD cắt BC ở G và H .Đoạn thẳng EH và AB cắt nhau ở M.Đoạn thẳng kẻ từ A vuông góc với BC cắt MH ở I.Cm:

a.Tam giác ACD=tam giác AME

b.Tam giác AGB=tam giác MIA

c. BG=GH

5.Cho tam giác ABC cân  ở A,trên cạnh BC lấy điểm D ,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường vuông góc với BC cắt ở A ,từ E kẻ đường vuông góc với BC cắt AC ở N.Cm:

a.MD=NE

b. MN cắt DE ở I .Cm I là trung điểm của DE.

c. TừC kẻ đường vuông góc với AC ,từ B kẻ đường vuông góc với AB ,chúng cắt nhau tại O .Cm AO là đường trung trực của BC.

 

 

giúp mk vs nha,mk cảm ơn nhju hjhj

 

 

1
20 tháng 7 2018

4,

a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A. 
AD = AE (gt) 
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc) 
=> tgiácACD = tgiácAME (g.c.g) 
b/ ta có: AG//EH (cùng vuông góc với CD) 
=> AG // IH 
mà gt => AI // GH 
vậy AGHI là hình bình hành 
=>AG = IH. 
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME 
=> AM = AC = AB 
=> A là trung điểm BM, mà AI // BC 
=> AI là đường trung bình của tgiác MBH 
=> I là trung điểm của MH. 
vậy: IM = IH = AG 
có: AM = AB 
góc BAG = góc AMI (so le trong) 
=> tgiác AGB = tgiác MIA ( c.g.c) 
c/ có AG//MH, A là trung điểm BM 
=> AG là đường trung bình của tgiácBMH 
=> G là trung điểm BH 
hay BG = GH.

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath