K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018
x3+y3+z3 = 3xyz + 2017 \(\Leftrightarrow x^3+y^3+z^3-3xyz=2017\) \(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=2017\) \(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=4034\) 4034 có 4 ước nguyên dương là 1; 2; 2017; 4034. Mà x; y; z là ba số nguyên dương \(\Rightarrow\)x +y+z \(\ge\)3 \(\Rightarrow\)x+y+z = 2017; 4034. *Nếu x+y+z = 4034. \(\Rightarrow\) (x-y)2 + (x-z)2 + (y-z)2 = 1 \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\\left|y-z\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\\left|y-z\right|=1\end{matrix}\right.\) (loại) *Nếu x+y+z = 2017 \(\Rightarrow\)(x-y)2 + (x-z)2 + (y-z)2 = 2 + TH1: \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\\left|y-z\right|=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\\left|y-z\right|=\sqrt{2}\end{matrix}\right.\) (loại) +TH2: \(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=1\\\left|x-z\right|=1\\y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x-z=-1\\y=z\end{matrix}\right.\)(không mất tính tổng quát) \(\Rightarrow\left\{{}\begin{matrix}x+y+z=2017\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017-2y\\x=y-1\end{matrix}\right.\) \(\Rightarrow2017-2y=y-1\) \(\Leftrightarrow3y=2016\Leftrightarrow y=672\) \(\Rightarrow x=673;z=672\) Vậy có 1 bộ ba (x;y;z) nguyên dương cần tìm là (672;672;673) và các hoán vị của chúng.
24 tháng 6 2019

Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)

Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)

\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)

\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )

Vậy...

27 tháng 5 2018

cho ba số x,y,z khác 0 và 1/x+1/y+1/z=0. Tính giá trị biểu thức: P=2017/3xyz(1/x^3+1/y^3+1/z^3)

10 tháng 5 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\) {chưa hiểu cần =>c/m chi tiết một câu khác}

\(\Rightarrow P=\dfrac{2017}{3}.xyz.\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=2017\)

2 tháng 5 2022

bn có thể lm rõ hơn dc ko

 

22 tháng 11 2017

Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:

\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn

\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.

\(\left(x-y\right)^3\)lẻ; ​​\(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.

\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Vậy PT vô nghiệm.

21 tháng 11 2017

Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được