So sánh số A,B số nào lớn hơn ? A =2^0+2^1+2^2+2^3+...+2^50 và B=2^51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)
\(\Rightarrow2A=2^1+2^2+2^3+...+2^{41}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{41}\right)-\left(2^0+2^1+...+2^{40}\right)\)
\(\Rightarrow A=2^{41}-2^0\)
\(\Rightarrow A=2^{41}-1\)
Vì \(2^{41}-1< 2^{41}\) nên A < B
Vậy A < B
a) Lấy 2A - A ,được 2^51 - 1 < 2^51
=> A < B
b) 2^300 = (2^3)^100 = 8^100
3^200 = (3^2)^100 = 9^100
=> 2^300 < 3^200
Ta có 2A=21+22+23+...+251
=> A= (21+22+23+...+251) - ( 20+21+22+23+...+250)
=> A= 251 - 20 < 251=B
=> A<B
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+....+2^{51}\)
\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)
\(=>A=2^{51}-1< 2^{51}=B=>A< B\)
A = 20 + 21 + 22 + 23 +...+250
=>2A=2( 20 + 21 + 22 + 23 +...+250)=21+22+23+...+251
=>2A-A=21+22+23+...+251-(20 + 21 + 22 + 23 +...+250)
A=21+22+23+...+251-20-21-22-23-...-250
=251-20
=251-1<251
=>A<B