K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

O B A C E

Vì tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\)

Lại có \(\widehat{ACB}\) và \(\widehat{OCE}\) là hai góc đối đỉnh nên chúng bằng nhau. Nói cách khác \(\widehat{OCE}=\widehat{ABC}\)

Do OE = OB nên \(\widehat{OEB}=\widehat{OBE}\)

Mà \(\widehat{ABC}+\widehat{OBE}=90^o\Rightarrow\widehat{OCE}+\widehat{OEB}=90^o\Rightarrow\widehat{EOC}=90^o.\)

Vậy \(OE\perp OA.\)

25 tháng 11 2016

tks bạn nhiều nha

15 tháng 11 2016

giúp mình bài này vs

a: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC nên OH là phân giác của góc BOC

OH*OA=OB^2=R^2

b: Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

Do đo: ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

a: Gọi H là trung điểm của OA

Xét (O) có

OH là một phần đường kính

BC là dây

OH⊥BC tại H

Do đó: H là trung điểm của BC

Xét tứ giác ABOC có 

H là trung điểm của đường chéo AO

H là trung điểm của đường chéo BC

Do đó: ABOC là hình bình hành

mà OB=OC

nên ABOC là hình thoi

12 tháng 4 2018

a, Gọi I là trung điểm của AB, ta có: OI = OA – IA

b, Ta chứng minh được IC//BD//OE

Mà OB = BI = IA => AC = CD = DE

 Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  AC > AB,  CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F.  5)  Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6)  Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD   7)  Giả sử...
Đọc tiếp

 Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho  AC > AB,  CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F.  5)  Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6)  Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD   7)  Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng đoạn OA. Tính giá trị của   ACAB. 8)  Gọi P  là điểm di động trên đoạn AC, đường thẳng BP  cắt đường tròn (O) tại N. Chứng minh rằng tâm của đường tròn ngoại tiếp tam giác CPN luôn nằm trên một đường thẳng cố định khi P thay đổi trên đoạn thẳng AC. 

0