Chứng minh rằng biểu thức sau không là lập phương của một số tự nhiên: 10150+5.1050+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : (10^50)^3<10^150+5*10^50+1<10^150+3*(10^50)^2+3*10^50+1= (10^50+1)^3
vay10^150+5*10^50+1 khong la lap phuong cua 2 so tu nhien
Tham khảo .
Ta có :
\(\left(10^{53}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+1\)
\(=\left(10^{50}+1\right)^3\)
Vậy \(10^{150}+5.10^{50}+1\)không là lập phương của 1 số tự nhiên
đpcm
Chứng minh biểu thức sau không phải là lập phương của một số tự nhiên:
19913333 + 19902222 + 19891111
Gọi ba số nguyên dương liên tiếp lần lượt là n , n+1 , n+2 (\(n\in Z+\))
Ta có : \(n\left(n+1\right)\left(n+2\right)=\left(n^2+n\right)\left(n+2\right)=n^3+2n^2+n^2+2n=n^3+3n^2+2n\)
Mặt khác : \(n^3< n^3+3n^2+2n< n^3+3n^2+3n+1\)
\(\Rightarrow n^3< n^3+3n^2+2n< \left(n+1\right)^3\)(1)
Vì n là số nguyên dương nên từ (1) ta có \(n\left(n+1\right)\left(n+2\right)\) không là lập phương của một số tự nhiên.