1. Cho \(\dfrac{a}{b}\)> \(\dfrac{c}{d}\)( a,b,c,d \(\in\) Z ; b > 0 , d > 0 ). Chứng tỏ ad > bc
2. Cho 0 < a < 5 < b ; a,b \(\in\) N. Chứng tỏ \(\dfrac{b}{a}\) > 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
Đề bài sai
Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)
Khi đó \(x< y\) nhưng \(z< y\)
\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)
\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)
\(b\left(a+c\right)=ba+bc\left(3\right)\)
\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)
\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)
\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(\Rightarrow x< y< z\)
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Bài 1:
\(3^{-1}.3^n+4.3^n=13.3^5\)
\(\Rightarrow3^{n-1}+4.3.3^{n-1}=13.3^5\)
\(\Rightarrow3^{n-1}\left(1+4.3\right)=13.3^5\)
\(\Rightarrow3^{n-1}.13=13.3^5\)
\(\Rightarrow3^{n-1}=3^5\)
\(\Rightarrow n-1=5\)
\(\Rightarrow n=6\)
Vậy n = 6
Bài 2a: Câu hỏi của Nguyễn Trọng Phúc - Toán lớp 7 | Học trực tuyến
1. Câu hỏi của Cuber Việt ( Câu b í -.- )
2. Quy đồng mẫu số:
\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)
\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)
Vì \(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.
So sánh \(ab+2018a\) và \(ab+2018b\):
. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.
. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)
\(\Rightarrow y.\left(x-3\right)=6\)
Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)
Tự lập bảng ...
Vậy ta có những cặp x,y thỏa mãn là:
\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)
Cần so sánh:
\(ab+2018a\) với \(ab+2018b\)
Cần so sánh \(2018a\) với \(2018b\)
Cần so sánh \(a\) với \(b\)
\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)
\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)
bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0
Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y
cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c
ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a
Vậy x/a=y/b=c/z
Vì \(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c< a+b+c+d\\a+b+d< a+b+c+d\\b+c+d< a+b+c+d\\a+c+d< a+b+c+d\end{matrix}\right.\)
Ta có :
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\\ \dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\\ \dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\\ \dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\\ \Rightarrow P>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=1\\ \Rightarrow P>1\left(1\right)\)
Vì \(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c>d\\a+b+d>c\\b+c+d>a\\a+c+d>b\end{matrix}\right.\)
Ta có :
\(\dfrac{a}{a+b+c}=\dfrac{2a}{\left(a+b+c\right)+\left(a+b+c\right)}< \dfrac{2a}{a+b+c+d}\)
\(\dfrac{b}{a+b+d}=\dfrac{2b}{\left(a+b+d\right)+\left(a+b+d\right)}< \dfrac{2b}{a+b+c+d}\left(a+b+d>c\right)\\ \dfrac{c}{b+c+d}=\dfrac{2c}{\left(b+c+d\right)+\left(b+c+d\right)}< \dfrac{2c}{a+b+c+d}\left(b+c+d>a\right)\\ \dfrac{d}{a+c+d}=\dfrac{2d}{\left(a+c+d\right)+\left(a+c+d\right)}< \dfrac{2d}{a+b+c+d}\left(a+c+d>b\right)\)
Từ đó, ta có :
\(\dfrac{a}{a+b+d}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+c+d}< \\ \dfrac{2a}{a+b+c+d}+\dfrac{2b}{a+b+c+d}+\dfrac{2c}{a+b+c+d}+\dfrac{2d}{a+b+c+d}=2\\ \Rightarrow P< 2\left(2\right)\)
Từ (1) và (2), ta có điều phải chứng minh.
b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
Bài 1:
Ta có:
\(\dfrac{a}{b}>\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)
\(\Leftrightarrow ad>bc\)
Vậy ...
Bài 2:
Ta có:
\(0< a< 5< b\)
\(\Leftrightarrow a;b>0\)
\(\Leftrightarrow\dfrac{b}{a}>0\)
Mà \(a< 5< b\)
\(\Leftrightarrow a< b\)
\(\Leftrightarrow\dfrac{b}{a}>1\)
Vậy ...