K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

I not sure for this answer if have any trouble you can ask me

a)\(\sqrt{x^2-4x+5}\ge\forall x\)

\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)

\(\sqrt{\left(x+1\right)^2}\ge0\forall x\)

nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)

13 tháng 6 2018

sai ngữ pháp Tiếng Anh :))

14 tháng 8 2020

b) Đk: \(0\le x\le4\)

Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)

<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)

<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)

<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)

<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)

<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)

<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)

<=> \(64x^2-4x^4=256x^4+32x^2+1\)

<=> \(260x^4-32x^2+1=0\)

Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0

Ta có: \(\Delta=32^2-4.260=-16< 0\)

=> pt vô nghiệm

14 tháng 8 2020

\(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\) đk: \(0\le x\le4\)

\(\Leftrightarrow4x+x^2+4x-x^2+2\sqrt{16x^2-x^4}=16x^2+8x+1\)

\(2\sqrt{16x^2-x^4}=16x^2+1\)

\(\Leftrightarrow64x^2-4x^4=256x^4+32x^2+1\)

\(\Leftrightarrow260x^2-32x^2+1=0\)

=> Vo nghiem

a: Ta có: \(2x^2-4x+5\)

\(=2\left(x^2-2x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-2x+1+\dfrac{3}{2}\right)\)

\(=2\left(x-1\right)^2+3>0\)(1)

Ta có: \(2x^2+4x+2\)

\(=2\left(x^2+2x+1\right)\)

\(=2\left(x+1\right)^2\)>=0(2)

Từ (1)và (2) suy ra hai căn thức này xác định được với mọi x

b: Ta có: \(\sqrt{2x^2-4x+5}>\sqrt{2x^2+4x+2}\)

\(\Leftrightarrow2x^2-4x+5>2x^2+4x+2\)

=>-8x>-3

hay x<3/8

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

a: \(2x^2-4x+5=2\left(x^2-2x+1+\dfrac{3}{2}\right)=2\left(x-1\right)^2+3>0\forall x\)

\(2x^2+4x+2=2\left(x+1\right)^2>=0\forall x\)

Do đó: Hai căn thức xác định với mọi x

b: \(\Leftrightarrow-4x+5>4x+2\)

=>-8x>-3

=>x<3/8

9 tháng 12 2017

lớp 10 học trường mô đây ?

9 tháng 3 2019

\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)

\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)

7 tháng 6 2018

@Xin giấu tên
\(x>1\) suy ra \(x>0\) là điều hiển nhiên

Hơn nữa \(x>1\Rightarrow x-1>1-1\leftrightarrow x-1>0\) (liên hệ giữa thứ tự và phép cộng) - Lớp 8

7 tháng 6 2018

a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)\(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)

\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)

b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)

\(\Leftrightarrow x\left(x-1\right)\ge0\)

\(x>1\rightarrow x>0;x-1>0\)

\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)

hay \(x>\sqrt{x}\) (đpcm)

Chúc bạn học tốt!

a: 

ĐKXĐ: x>=5/2

\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)

=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

=>\(2\sqrt{2x-5}+4=14\)

=>\(\sqrt{2x-5}=5\)

=>2x-5=25

=>2x=30

=>x=15

b: \(x^2-4x=\sqrt{x+2}\)

=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0

=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0

=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0

=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)