K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Bạn chép nhầm đề rồi nhé, phải sửa thành: "Chứng minh: \(BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)"

Tam giác DMC có MD \(\perp\) DC \(\rightarrow\) Tam giác MDC vuông tại D

\(\Rightarrow DC^2=MC^2-MD^2\) (định lý Pytago) (1)

Tương tự, ta cũng có:

Tam giác AME vuông tại E \(\Rightarrow AE^2=AM^2-ME^2\) (định lý Pytago) (2)

Tam giác BMF vuông tại F \(\Rightarrow BF^2=BM^2-MF^2\) (định lý Pytago) (3)

Từ (1), (2) và (3) \(\Rightarrow DC^2+AE^2+BF^2=CM^2-MD^2+AM^2-ME^2+BM^2-MF^2\) (4)

Chứng minh tương tự các ý trên, ta có

\(BD^2=BM^2-MD^2;CE^2=CM^2-ME^2;AF^2=AM^2-MF^2\)

\(\Rightarrow BD^2+CE^2+AF^2=BM^2-MD^2+CM^2-ME^2+AM^2-MF^2\) (5)

Từ (4) và (5) \(\Rightarrow\) \(BD^2+CE^2+AF^2=DC^2+AE^2+FB^2\) (đpcm)

Chúc bạn học tốt!

12 tháng 6 2018

A C B M D E F

17 tháng 9 2018

Áp dụng định lí Pi-ta-go vào tam giác vuông BDM, ta có:

B M 2 = B D 2 + D M 2 ⇒ B D 2 = B M 2 - D M 2     (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông CEM, ta có:

C M 2 = C E 2 + E N 2 ⇒ C E 2 = C M 2 - E M 2     (2)

Áp dụng định lí Pi-ta-go vào tam giác vuông AFM, ta có:

A M 2 = A F 2 + F M 2 ⇒ A F 2 = A M 2 - F M 2    (3)

Cộng từng vế của (1), (2) và (3) ta có:

B D 2 + C E 2 + A F 2 = B M 2 - D M 2 + C M 2 - E M 2 + A M 2 - F M 2   (4)

Áp dụng định lí Pi-ta-go vào tam giác vuông BFM, ta có:

B M 2 = B F 2 + F M 2      (5)

Áp dụng định lí Pi-ta-go vào tam giác vuông CDM, ta có:

C M 2 = C D 2 + D M 2      (6)

Áp dụng định lí Pi-ta-go vào tam giác vuông AEM, ta có:

A M 2 = A E 2 + E M 2      (7)

Thay (5), (6), (7) vào (4) ta có:

B D 2 + C E 2 + A F 2 = B F 2 + F M 2 - D M 2 + C D 2 + D M 2 - E M 2 + A E 2 + E M 2 - F M 2 = D C 2 + E A 2 + F B 2

Vậy  B D 2 + C E 2 + A F 2 = D C 2 + E A 2 + F B 2

2 tháng 9 2016

A B C M D F E

Kí hiệu như trên hình.

Ta có : \(AF^2+MF^2=AE^2+EM^2=AM^2\)

\(BD^2+MD^2=BF^2+MF^2=BM^2\)

\(ME^2+EC^2=MD^2+DC^2=MC^2\)

Cộng các đẳng thức trên theo vế 

\(\left(BD^2+CE^2+AF^2\right)+\left(MF^2+MD^2+ME^2\right)=\left(DC^2+EA^2+FB^2\right)+\left(EM^2+MF^2+MD^2\right)\)

\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)

 

 

2 tháng 9 2016

ta có:BD2+CE2+AF2=MB2-MD2+MC2-ME2+MA2-MF2=MA2+MB2+MC2-(MD2+ME2+MF2)

DC2+EA2+FB2=MC2-MD2+MA2-ME2+MB2-MF2=MA2+MB2+MC2-(MD2+ME2+MF2)

→BD2+CE2+AF2=DC2+EA2+FB2

15 tháng 9 2016

/hoi-dap/question/90157.html

2 tháng 12 2018

△DMC vuông tại D => DC2= MC2 - MD2
△AME vuông tại E => EA2 = AM2 - ME2
△BMF vuông tại F => BF2 = BM2 - MF2
Suy ra DC2 + EA2 + BF2 = MC2 - MD2 + AM2 - ME2 + BM2 - MF2 (1)
△BDM vuông tại D => BD^2 = BM^2 - MD^2
△CME vuông tại E => CE^2 = MC^2 - ME^2
△AMF vuông tại F => AF^2 = AM^2 - MF^2
Suy ra BD2 + CE2 + AF2 = BM2 - MD2 + MC2 - ME2 + AM2 - MF2 (2)
Từ (1) và (2) => BD2 + CE2 + AF2 = DC2 + EA2 + FB2

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

12 tháng 6

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

27 tháng 1 2019

Bạn ơi cho mình hỏi kiến thức được sử dụng trong bài dừng ở đâu

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi