K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Câu 2:

\(9xy+3x+3y=51\\ \Leftrightarrow\left(9xy+3x\right)+\left(3y+1\right)=52\\ \Leftrightarrow3x\left(3y+1\right)+\left(3y+1\right)=52\\ \Leftrightarrow\left(3x+1\right)\left(3y+1\right)=52\)

Lập bảng giá trị :

\(3x+1\) \(1\) \(2\) \(4\) \(13\) \(26\) \(52\)
\(x\) \(0\left(loại\right)\) \(\dfrac{1}{3}\left(loại\right)\) \(1\) \(4\) \(\dfrac{25}{3}\left(loại\right)\) \(17\)
\(3y+1\) \(52\) \(26\) \(13\) \(4\) \(2\) \(1\)
\(y\) \(17\) \(\dfrac{25}{3}\left(loại\right)\) \(4\) \(1\) \(\dfrac{1}{3}\left(loại\right)\) \(0\left(loại\right)\)

Vậy cặp số nguyên dương \(\left\{x;y\right\}=\left\{4;1\right\};\left\{1;4\right\}\)

\(\text{ b) }N=x^2+5y^2-4xy+6x-14y+15\\ =\left(x^2+4y^2+9-4xy+6x-12y\right)+\left(y^2-2y+1\right)+5\\ =\left(x-2y+3\right)^2+\left(y-1\right)^2+5\)

Do \(\left(y-1\right)^2\ge0\forall x\)

\(\left(x-2y+3\right)^2\ge0\forall x\\ \Rightarrow\left(x-2y+3\right)^2+\left(y-1\right)^2\ge0\forall x\\ \Rightarrow N=\left(x-2y+3\right)^2+\left(y-1\right)^2+5\ge5\forall x\)

Dấu \("="\) xảy ra khi:

\(\left\{{}\begin{matrix}\left(y-1\right)^2=0\\\left(x-2y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=0\\x-2y+3=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2y-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\)

Vậy \(N_{Min}=5\) khi \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

11 tháng 6 2018

B A C N M D H

\(\text{a) Ta có : }\widehat{DMA}=90^0\left(DM\perp AB\right)\\ \widehat{DNA}=90^0\left(DN\perp AC\right)\\ \widehat{MAN}=90^0\left(gt\right)\\ \Rightarrow\text{Tứ giác }AMDN\text{ có }:\widehat{DMA}=\widehat{DNA}=\widehat{MAN}=90^0\\ \Rightarrow\text{Tứ giác }AMDN\text{ là hình chữ nhật }\left(\text{Dấu hiệu nhận biết}\right)\)

\(\text{b) Ta có : }AH\perp BC\left(gt\right)\Rightarrow AD\ge AH\left(Tính\text{ chất đường xiên}\right)\\\text{Mà }AD=MN\left(\text{Tính chất đường chéo hình chữ nhật}\right)\\ \Rightarrow MN\ge AH\)

Dấu "='' xảy ra khi:

\(AH\equiv AD\Rightarrow H\equiv D\)

Vậy đoạn thẳng MN nhận giá trị nhỏ nhất khi \(H\equiv D\)

B A C D=H M N

5 tháng 2 2022

sao BMC = HAN + AHN vậy ạ ?

 

a,Xét tg ABC có:                                                  Góc A=90*,Góc M=90*,Góc N=90*                         <=>Tứ giác AMDN là hcn(vì có gócA=góc M=góc N=90*)

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

30 tháng 11 2017

làm được chưa bạn

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

a: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

=>AMDN là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MN//AB

=>N là trung điểm của AC

c: Xét tứ giác ADCE có

N là trung điểm chung của AC và DE

Do đó: ADCE là hình bình hành

mà DA=DC

nên ADCE là hình thoi

d: ADCE là hình thoi

=>AE//CD

=>AE//BC

=>AECB là hình thang

Để AECB là hình thang cân thì góc ABC=góc ECB

=>góc ABC=2*góc ACB

mà góc ABC+góc ACB=90 độ

nên góc ABC=2/3*90=60 độ

19 tháng 11 2021

Giải thích các bước giải:

a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,

DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,

ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o

⇒◊AMDN⇒◊AMDN là hình chữ nhật.

Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:

MD=√AD2−AM2=4cmMD=AD2−AM2=4cm

⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2

b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN

Mà AH⊥BCAH⊥BC

ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD

⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN

⇒ΔMHN⇒ΔMHN vuông tại HH

⇒ˆMHN=90o⇒MHN^=90o

c. Gọi G,IG,I là  trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC

⇒GI//BC⇒GI//BC

⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC

⇒E∈GI⇒E∈GI

⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ