K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 9 2021

\(A=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}\)

8 tháng 4 2023

Với `x >= 0,x ne 1` có:

`A=[10\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+4)]-[2\sqrt{x}-3]/[\sqrt{x}+4]-[\sqrt{x}+1]/[\sqrt{x}-1]`

`A=[10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`

`A=[10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4]/[(\sqrt{x}-1)(\sqrt{x}+4)]`

`A=[-3x+10\sqrt{x}-7]/[(\sqrt{x}-1)(\sqrt{x}+4)]`

`A=[(\sqrt{x}-1)(-3\sqrt{x}-7)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`

`A=[-3\sqrt{x}-7]/[\sqrt{x}+4]`

9 tháng 5 2022

\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)

\(B=\sqrt{5}+2+\sqrt{5}-2\)

\(B=2\sqrt{5}\)

 

9 tháng 5 2022

\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)

\(A=-1\)

 

 

28 tháng 6 2021

Bạn chia nhỏ ra để nhận được câu tl sớm nhất nhé!Bạn đặt câu hỏi free mà để dày cộp như này khum ai dám làm =(((

NV
22 tháng 11 2021

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+n^2+\left(n+1\right)^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(n^2+n\right)^2+n^2+n^2+2n+1}{\left(n^2+n\right)^2}}=\sqrt{\dfrac{\left(n^2+n\right)^2+2\left(n^2+n\right)+1}{\left(n^2+n\right)^2}}\)

\(=\sqrt{\dfrac{\left(n^2+n+1\right)^2}{\left(n^2+n\right)^2}}=\dfrac{n^2+n+1}{n^2+n}=1+\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A=1+\dfrac{1}{2.3}+1+\dfrac{1}{3.4}+....+1+\dfrac{1}{2021.2022}\)

\(=2020+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)

\(=2020+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=2020+\dfrac{1}{2}-\dfrac{1}{2022}=...\)

22 tháng 11 2021

\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}=\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}}=\sqrt{\left(1+\dfrac{1}{2}-\dfrac{1}{3}\right)^2}=1+\dfrac{1}{2}-\dfrac{1}{3}\)

Cmttt ta được:

\(A=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}+1+\dfrac{1}{2021}-\dfrac{1}{2022}\\ A=2020+\dfrac{1}{2}-\dfrac{1}{2022}=2020+\dfrac{505}{1011}=...\)

6 tháng 8 2021

a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}=14\sqrt{2}-9\sqrt{2}+2\sqrt{2}=7\sqrt{2}\)

b) \(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}=5\sqrt{10}+10-5\sqrt{10}=10\)

c) \(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}=6-5\sqrt{6}-6=5\sqrt{6}\)

d) \(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}=12\sqrt{3}+6\sqrt{3}-3\sqrt{3}=15\sqrt{3}\)

e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}=2\sqrt{3}+3\sqrt{3}=\left(\sqrt{3}+1\right)=4\sqrt{3}-1\)

f) \(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}.\dfrac{2}{\sqrt{2}+1}=2\sqrt{2}-\left(12-6\sqrt{2}\right)=8\sqrt{2}-12\)

30 tháng 6 2021

a) ĐKXĐ có thêm \(x\ne4\)

 \(A=\left(\dfrac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\dfrac{x}{x-2\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{2-\sqrt{x}}\)

\(=\left(\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\dfrac{2-\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(x-\sqrt{x}+2\right)-x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{-2}{\sqrt{x}+1}\)

 \(B=\left(\dfrac{x}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\dfrac{x+1}{\sqrt{x}+3}:\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{x+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+1}{\sqrt{x}+3}:\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{x+1}{\sqrt{x}+3}.\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+1}{\sqrt{x}+1}\)

1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)