K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1- Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không thể có chữ tận cùng bằng 2, 3, 7, 8. 2- Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn. 3- Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n+1. Không có số chính phƣơng nào có dạng 4n + 2 hoặc 4n + 3 (n thuộc N). 4- Số chính phương chỉ có thể có một...
Đọc tiếp

1- Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không thể có chữ tận cùng bằng 2, 3, 7, 8.

2- Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.

3- Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n+1. Không có số chính phƣơng nào có dạng 4n + 2 hoặc 4n + 3 (n thuộc N).

4- Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n +1. Không có số chính phương nào có dạng 3n + 2 ( n thuộc N ). 5- Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn. Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2. Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

6- Số chính phương chia hết cho 2 thì chia hết cho 4. Số chính phương chia hết cho 3 thì chia hết cho 9 Số chính phương chia hết cho 5 thì chia hết cho 25 Số chính phương chia hết cho 8 thì chia hết cho 16.

mọi người làm ơn giúp em tìm ví dụ của từng tính chất với ạ! ( nhớ nêu ví dụ cụ thể, rõ ràng, dễ hiểu nhá)

0
AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

13 tháng 8 2015

Nếu a có tận cùng là 0 => a^2 có tận cùng là 0 
tương tự giống trên  1 => a^2 .....................1
..............................2=> a^2.......................4
..............................3=>a^2........................9
..............................4=>a^2........................6
..............................5=>a^2.......................5
..............................6=>a^2.......................6
..............................7=>a^2........................9
..............................8=>a^2.......................4
..............................9=>a^2.......................1
vậy chữ số tậ cùng của số chính phương chỉ có thể là 1 trong các số ( 0, 1 ,4 , 5 , 6 ,9

6 tháng 12 2017

Nếu a có tận cùng là 0 => a2 có tận cùng là 0 
tương tự giống trên 1 => a2 ...........1
.............................2 => a2 ...........4
.............................3 => a2 ...........9
.............................4 => a2 ...........6
.............................5 => a2 ...........5
.............................6 => a2 ...........6
.............................7 => a2 ...........9
.............................8 => a2 ...........4
.............................9 => a2 ...........1
Vậy chữ số tận cùng của số chính phương chỉ có thể là 1 trong các số (0; 1; 4; 5; 6; 9)
=>> nhớ tích cho tui á =)))

Số chính phương là một số bằng bình phương của một số tự nhiênFTính chất  a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi   2; 3; 7; 8.b)     Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,c)      Một số chính  phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nólà số lẻ.d)   Khi phân tích ra thừa số nguyên...
Đọc tiếp

Số chính phương là một số bằng bình phương của một số tự nhiên

FTính chất

  a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi   

2; 3; 7; 8.

b)     Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,

c)      Một số chính  phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó

là số lẻ.

d)   Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số

nguyên tố với số mũ chẵn ,không chứa thừa số nguyên tố với số mũ lẻ .

 

FTừ tính chất này suy ra

 

-Số chính phương chia hết cho 2 thì chia hết cho 4.

-Số chính phương chia hết cho 3 thì chia hết cho 9.

-Số chính phương chia hết cho 5 thì chia hết cho 25. 

-Số chính phương chia hết cho 8 thì chia hết cho 16.

0
13 tháng 8 2015

c) Số chính phương chỉ có thể tận cùng bằng 0; 1; 4; 5; 6; 9 Vì :

 

27 tháng 1 2016

số chính phương chỉ có thể tận cùng là 0;1;4;5;6;9 vì:

0x0=0

1x1=1

2x2=4

4x4=16

3x3=9

14 tháng 1 2016

k giải tóa oy nên bn ko phải lo về câu tl nha:

1) {1;3;7;9}

2) {0;1;4;5;6;9}

3) {-5;2}

13 tháng 1 2016

gọi số đó là x

ta có x = 472

x = 2209