K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(4(x^2y^2+z^2t^2+2xyzt)-(x^2+y^2-z^2-t^2)^2\)

\(=[2(xy+zt]^2-(x^2+y^2-z^2-t^2)^2\)

\(=(2xy+2zt)^2-(x^2+y^2-z^2-t^2)^2\)

\(=(2xy+2zt-x^2-y^2+z^2+t^2)(2xy+2zt+x^2+y^2-z^2-t^2)^2\)

31 tháng 8 2021

\(4\left(x^2y^2+z^2t^2+2xyzt\right)-\left(x^2+y^2-z^2-t^2\right)^2\)

\(=\left[2\left(xy+zt\right)\right]^2-\left(x^2+y^2-z^2-t^2\right)^2\)

\(=\left(2xy+2zt\right)^2-\left(x^2+y^2-z^2-t^2\right)^2\)

\(=\left(2xy+2zt-x^2-y^2+z^2+t^2\right)\left(2xy+2zt+x^2+y^2-z^2-t^2\right)^2\)

Ta có: \(4\left(x^2y^2+2xyzt+z^2t^2\right)-\left(x^2+y^2-z^2-t^2\right)^2\)

\(=\left(2xy+2tz\right)^2-\left(x^2+y^2-z^2-t^2\right)^2\)

\(=\left(2xy+2tz-x^2-y^2+z^2+t^2\right)\left(2xy+2tz+x^2+y^2-z^2-t^2\right)\)

\(=\left[-\left(x^2-2xy+y^2\right)+\left(z^2+2tz+t^2\right)\right]\left[\left(x^2+2xy+y^2\right)-\left(t^2-2tz+z^2\right)\right]\)

\(=\left(z+t-x+y\right)\left(z+t+x-y\right)\left(x+y-t+z\right)\left(x+y+t-z\right)\)

2 tháng 9 2021

\(\left(x+y+z\right)^2+\left(x+y-z\right)^2-4z^2=\left(x+y+z\right)^2+\left(x+y-z-2z\right)\left(x+y-z+2z\right)=\left(x+y+z\right)^2+\left(x+y-3z\right)\left(x+y+z\right)=\left(x+y+z\right)\left(x+y+z+x+y-3z\right)=\left(x+y+z\right)\left(2x+2y-2z\right)=2\left(x+y+z\right)\left(x+y-z\right)\)

Ta có:

 (x + y + z)2 + (x + y – z)2 – 4z2

\(=\left(x+y-z\right)^2+\left(x+y-z\right)\left(x+y+3z\right)\)

\(=\left(x+y-z\right)\left(x+y+3z+x+y-z\right)\)

\(=2\left(x+y-z\right)\left(x+y+z\right)\)
24 tháng 11 2015

5x+3 là số chẵn, 5y+4 là số lẻ. Phân tích 516 = 2x2x3x43

do đó, 5y+4 = 129, vậy y=3

5x+3 = 4, nên x=0

7 tháng 9 2020


\(a,4\left(2-x\right)^2+xy-2y\)

\(=4\left(2-x\right)^2-y\left(2-x\right)\)

\(=4-y\left(2-x\right)^2\left(2-x\right)\)

\(=\left(2-x\right)\left[\left(2-x\right)4-y\right]\)

\(=\left(2-x\right)\left(4x-8+y\right)\)

\(c,x^3+y^3+z^3-3xyz\)

\(=x^3+y^3+z^3+3x^2y-3x^2y+3xy^2-3xy^2-3xyz\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+1\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y\right)-3xyz\)

\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

7 tháng 9 2020

a) 4(2 - x)2 + xy - 2y = 4(x - 2)2 + y(x - 2) = (4x - 8 + y)(x - 2)

b) 2(x - 1)3 - 5(x - 1)2 - (x - 1) = (x - 1)[2(x - 1)2 - 5(x - 1) - 1]

= (x - 1)(2x2 - 4x + 2 - 5x + 5 - 1) = (x - 1)(2x2 - 9x + 6)

c) x3 + y3 + z3 - 3xyz = (x + y)(x2 - xy + y2) + z3 - 3xyz

= (x + y)3 + z3 - 3xy(x + y) - 3xyz = (x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z)

= (x + y + z)(x2 + y2 + z2 - xz - yz + 2xy - 3xy) = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)

2 tháng 9 2021

\(\left(xy+1\right)^2-\left(x+y\right)^2=\left(xy+1-x-y\right)\left(xy+1+x+y\right)=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy-x-y+1\right)\left(xy+1+x+y\right)\)

\(=\left(y-1\right)\left(x-1\right)\left(y+1\right)\left(x+1\right)\)