a) tính giá trị biểu thức
M=70(719+718 +717+...+71+72)+1
b)cho x,y,z khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức
N= \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow yz=-xy-xz\)
Ta có \(x^2+2yz=x^2+yz-xy-xz=\left(x-y\right)\left(x-z\right)\)
Tương tự \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2-2xy=\left(z-x\right)\left(z-y\right)\)
\(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-z\right)\left(y-x\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\\ A=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{-yz\left(y-z\right)+xz\left(y-z\right)+xz\left(x-y\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(y-z\right)\left(xz-yz\right)+\left(x-y\right)\left(xz-xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow xy+yz+xz=0\)
A=\(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}+\dfrac{3}{xyz}\right)=xyz.\dfrac{3}{xyz}=3\)
bạn tự chứng minh \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}=0\) nha
đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\)
bài toán thành \(a^3+b^3+c^3-3abc=0\) nha
\(x^2+y^2-z^2=x^2+\left(y-z\right)\left(y+z\right)=x^2-x\left(y-z\right)=x\left(x-y+z\right)=x\left(-y-y\right)=-2xy\)
Tương tự \(x^2+z^2-y^2=-2xz;y^2+z^2-x^2=-2yz\)
Cộng VTV:
\(\Leftrightarrow\text{Biểu thức }=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}=-\dfrac{1}{8}\)
\(\dfrac{1}{\left(x-y\right)\left(z^2+yz-x^2-xz\right)}=\dfrac{1}{\left(x-y\right)\left[\left(z-x\right)\left(z+x\right)+y\left(z-x\right)\right]}=\dfrac{1}{\left(z-x\right)\left(x-y\right)\left(x+y+z\right)}\)
Tương tự: \(\dfrac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}=\dfrac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}\)
\(\dfrac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}=\dfrac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}\)
\(\Rightarrow M=\dfrac{y-z-z+x-x+y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}\\ M=\dfrac{2}{\left(x-y\right)\left(z-x\right)\left(x+y+z\right)}\)
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{z+xz+1}{xz+z+1}\)
\(A=1\)
b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)
\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)
ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)
\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow\left(x+y\right)^2=z^2\)
\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)
Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)
a, (M-1)/70-71=m
m=(71^9+71^8....71+1)
71m=71^10+...71^2+71
70m=71^10-1
(M-1)/70=71^10+70
M-1=70(71^10+70)
M=70(71^10+70)-1