K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

25 tháng 6 2017

\(A=3x^2+3y^2+z^2\ge0;\forall x,y,z\in R\)Dấu ''='' xảy ra khi x = y = z = 0

Vậy minA = 0 khi x = y = z = 0

2 tháng 8 2019

14 tháng 2 2017

Đáp án C

f x = − x 3 − 3 x 2 + m ⇒ f ' x = − 3 x 2 − 6 x f ' x = 0 ⇔ x = 0 x = − 2 ( l o a i )

Tại x=0, ta có y 0 = m ⇒ y 0 = 0 ⇔ m = 0

Chọn phương án C.

12 tháng 9 2018

E   =   2 x 3   –   2 y 3   –   3 x 2   –   3 y 2     =   2 ( x 3   –   y 3 )   –   3 ( x 2   +   y 2 )     =   2 ( x   –   y ) ( x 2   +   x y   +   y 2 )   –   3 ( x 2   +   y 2 )

 

Vì x – y = 1 nên

E   =   2 ( x 2   +   y 2   +   x y )   –   3 x 2   –   3 y 2   =   - ( x 2   –   2 x y   +   y 2 )   =   - ( x   –   y ) 2   =   - 1

Đáp án cần chọn là: A

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)