K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [E, D] Đoạn thẳng n: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng s: Đoạn thẳng [M, I] Đoạn thẳng t: Đoạn thẳng [M, J] A = (0.26, 6.08) A = (0.26, 6.08) A = (0.26, 6.08) B = (-1.78, 1.2) B = (-1.78, 1.2) B = (-1.78, 1.2) C = (5.58, 1.02) C = (5.58, 1.02) C = (5.58, 1.02) Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h

Kẻ \(MI⊥AB,MJ⊥AC\)

Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))

Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)

Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)

Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)

Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)

Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.

15 tháng 5 2017

em mới học lớp 5 nên không giúp đc gì cho chị, mong chị thứ lỗi. chúc chị học giỏi nha

17 tháng 3 2022

em mới lớp 4 chị ơi

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

8 tháng 5

câu d sao bh và ck giao ở o đc hay vậy

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

20 tháng 3 2022

Em mời có lớp 5 thôi

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy