Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(MI⊥AB,MJ⊥AC\)
Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))
Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)
Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)
Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)
Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)
Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.
a) vì trong tam giác cân đường trung tuyến đồng thời là đường phân giác nên AM là tia phân giác của góc BAC
⇒ góc BAM = góc CAM = 1/2 góc BAC
Mà góc BAC = 90 độ nên góc BAM = 45 độ
mik không hiểu đề lắm bạn ơi, bạn đọc và sửa lại giúp mình nhé, rồi mình giải cho
em mới học lớp 5 nên không giúp đc gì cho chị, mong chị thứ lỗi. chúc chị học giỏi nha
em mới lớp 4 chị ơi