tìm số tự nhiên a và b biết:
1.a + b = 36 và UCLN (a,b) bằng 6
2.a + b = 72 và UCLN (a,b) bằng 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi ƯC(3n+4,5n+7)=d
=>3n+4 chia hết cho d=>5.(3n+4)=15n+20 chia hết cho d
5n+7 chia hết cho d=>3.(5n+7)=15n+21 chia hết cho d
=>15n+21-15n-20 chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>ƯC(3n+4,5n+7)=1
=>3n+4 và 5n+7 là 2 số nguyên tố cùng nhau
UCLN(a;b)=100
a=100m; b=100n
(m;n)=1 và m > n
a+b = 100m +100n =500
100(m+n) =500
m+n =5
m=3 và n=2 → a=300;b=200
M=4 và n=1 → a=400;b=100
Câu 1 : \(\frac{a}{b}=\frac{42}{66}=\frac{7}{11}\Rightarrow a=7k;b=11k\) với \(k\in\) N*
ƯCLN(a ; b) = 36 => ƯCLN(7k ; 11k) = 36. Mà 7 và 11 nguyên tố cùng nhau nên k = 36
Vậy a = 36 x 7 = 252 ; b = 396.
Phân số phải tìm là \(\frac{252}{396}\)
a.ƯCLN(a,b)=12 ⟹a=12.m
b=12.n với m,n N* và (m,n)=1
a+b=120⟹12.m+12.n=120⟹12.(m+n)=120
⟹m+n=120:12=10
m 1 9 3 7
n 9 1 7 3
a 12 108 36 84
b 12 108 36 84
Tham khảo
a =28q ; b =28 p ;(q;p)=1 ; q;p thuộc N và q>p
a+b =224
=>28q+28p = 224 => q+p = 8
+q=7 => a =7.28 =196 ; p =1 => b =1.28 =28
+q=5 => a =5.28 =140; p =3 => 3.28 =84
Vậy a =196; b=28
hoặc a =140 ; b=84
Vì a.b=ƯCLN(a,b).BCNN(a,b)=>a.b=36.756=27216
Mà ƯCLN(a,b)=36=>a\(⋮\)36;b\(⋮\)36
nên ta đặt : a=36.k
b=36.m
Với ƯCLN(k,m)=1
ta có : a.b=27216=>36k.36m=27216=>1296.k.m=27216
=>k.m =21
mà ƯCLN(k,m)=1
ta có bảng sau :
k | 7 | 3 | 21 | 1 | |||
m | 3 | 7 | 1 | 21 | |||
a | 252 | 108 | 756 | 36 | |||
b | 108 | 252 | 36 | 756 |
Vậy (a,b)=(252;108);(108;252);(756;36);(36;756).
Bài 1 :
Giả sử a > b
ƯCLN(a;b) = 6 => a = 6m ; b = 6n (m > n ; n \(\ne\) ()
Ta có : a + b = 6m + 6n = 6 . (m + n) = 36
=> m + n = 6
Vì m > n ; n \(\ne\) 0 nên (m ; n) \(\in\) {(5;1) ; (4;2) ; (3;3}
=> (a;b) \(\in\) {(30;6) ; (24;12) ; (18;18)}
Bài 2 : Tương tự
Gọi a=6h;b=6k thì a+b=6(h+k)=36
=> h+k=6
Có bảng
(cột
này
thừa nha)
Thấy chỉ có cặp 30;6 và 6;30 thỏa mãn