Rút gọn biểu thức sau
A=sinx -sin2x / cosx +cos2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=[sin x + sin 2x + sin 3x]/[cos x + cos 2x + cos 3x]`
`A=[2sin2x.cosx+sin2x]/[2cos2x.cosx+cos2x]`
`A=[sin2x(2cosx+1)]/[cos2x(2cosx+1)]`
`A=tan 2x`
\(A=\dfrac{sinx-sin2x+sin3x}{cosx-cos2x+cos3x}\)
\(ĐK\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\) \(A=\dfrac{sinx+sin3x-sin2x}{cosx+cos3x-cos2x}\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}=\dfrac{2sin2x.cosx-sin2x}{2cos2x.cosx-cos2x}\\=\dfrac{sin2x\left(2cosx-1\right)}{cos2x\left(2cosx-1\right)}\end{matrix}\right.\) \(\Rightarrow\) \(A=tan2x\)
Đáp án: A
Ta có:
A = c o s 2 x + sin 2 x + sin 2 x 2 sin x + c o s x
\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)
\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)
\(A=\frac{sinx+sin3x+sin2x}{cosx+cos3x+cos2x}=\frac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\frac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=\frac{sin2x}{cos2x}=tan2x\)
Tiêu đề không phù hợp. Cái này là giải phương trình bạn nhá.
Lời giải:
PT $\Leftrightarrow 2\cos ^2x-1-2\cos x\sin x=\sin x+\cos x$
$\Leftrightarrow (2\cos ^2x-1-\cos x)-(2\cos x\sin x+\sin x)=0$
$\Leftrightarrow (\cos x-1)(2\cos x+1)-\sin x(2\cos x+1)=0$
$\Leftrightarrow (2\cos x+1)(\cos x-1-\sin x)=0$
Nếu $2\cos x+1=0\Rightarrow x=\pm \frac{2}{3}\pi +2k\pi$ với $k$ nguyên.
Nếu $\cos x-1-\sin x=0$
$\Leftrightarrow \cos x-\sin x=1$
$\Rightarrow \cos x=\sin x+1$
$\Rightarrow \cos ^2x=(\sin x+1)^2$
$\Leftrightarrow 1-\sin ^2x=(\sin x+1)^2$
$\Rightarrow \sin x=0$ hoặc $\sin x=-1$
Nếu $\sin x=0\Rightarrow \cos x=1$. Ta tìm được $x=2k\pi$ với $k$ nguyên
Nếu $\sin x=-1\Rightarrow \cos x=0$. Ta tìm được $x=2k\pi-\frac{\pi}{2}$ với $k$ nguyên.
a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)
\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)
\(=3sinx-4sin^3x\)
b/
\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)
\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)
\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)
c/
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)
\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
d/
\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)
e/
ta có : \(\dfrac{sinx-sin2x}{cosx+cos2x}=\dfrac{sinx-2sinxcosx}{cosx+2cos^2x-1}=\dfrac{-sinx\left(2cosx-1\right)}{cos^2x+cosx+cos^2x-1}\)
\(=\dfrac{-sinx\left(2cosx-1\right)}{cosx\left(cosx+1\right)+\left(cosx+1\right)\left(cosx-1\right)}=\dfrac{-sinx\left(2cosx-1\right)}{\left(2cosx-1\right)\left(cosx+1\right)}\)
\(=\dfrac{-sinx}{cosx+1}\)