K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Câu hỏi của Chien - Toán lớp 8 - Học toán với OnlineMath

đấy

29 tháng 1 2022

\(a,5x^2y-10xy^2=5xy\left(x-2y\right)\\ b,x^2+2xy+y^2-5x-5y=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\\ c,x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\\ d,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)

29 tháng 1 2022

undefined

20 tháng 10 2021

b: \(x^2-2xy+y^2-z^2\)

\(=\left(x-y\right)^2-z^2\)

\(=\left(x-y-z\right)\left(x-y+z\right)\)

d: \(x^2+4x+3=\left(x+3\right)\left(x+1\right)\)

16 tháng 10 2022

=x4−2x3+2x3−4x2+4x2−8x+7x−14=x4−2x3+2x3−4x2+4x2−8x+7x−14

=(x−2)(x3+2x2+4x+7)

1 tháng 2 2018

2, a^3-3ab^2 = 5

<=> (a^3-3ab^2)^2 = 25

<=> a^6-6a^4b^2+9a^2b^4 = 25

b^3-3a^2b=10

<=> (b^3-3a^2b)^2 = 100

<=> b^6-6a^2b^4+9a^4b^2 = 100

=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2

<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3

<=> a^2+b^2 = 5

Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080

Tk mk nha

1 tháng 2 2018

1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)

\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)

\(=\left(x+5y\right)\left(x+y-1\right)\)

2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)

\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)

Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)

Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)

31 tháng 10 2021

1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)

2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)

3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)

5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)

6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)

31 tháng 10 2021

\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

17 tháng 7 2021

a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

 

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)

15 tháng 1 2018

1) \(x^2+6xy+5y^2-5y-x\)

\(=\left(x^2-xy+x\right)+\left(5xy+5y^2-5y\right)\)

\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)

\(\left(x+5y\right)\left(x+y-1\right)\)

2) Ta có : \(a^3-3ab^2=5\)

\(\Rightarrow\)\(\left(a^3-3ab^2\right)^2-100=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

Và \(b^3-3a^2b=10\)

\(\Rightarrow\)\(\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2-9a^4b^2=100\)

\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)

Hoặc \(125=\left(a^2+b^2\right)^3\Rightarrow a^2+b^2=5\)

Do đó : \(S=2016\left(a^2+b^2\right)=2016.5=10080\)

20 tháng 7 2021

a) x2-4y2-x++2y

= x2-(2y)2-x+2y

= (x-2y)(x+2y)-(x-2y)

=(x-2y)(x+2y-1)

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3