Tìm m để phương trình 2x2 + 8x + 3m = 0 có hai nghiệm x1, x2 thỏa mãn điều kiện: x12 + x22 = 15
Giúp mình với, mình đang cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho có nghiệm khi ∆ ' = 1 - m ≥ 0 ⇔ m ≤ 1 .
Theo định lí Vi-ét, ta có: x 1 + x 2 = - 2 x 1 x 2 = m .
Kết hợp với điều kiện của bài toán 3 x 1 + 2 x 2 = 1 ta có hệ phương trình:
x 1 + x 2 = - 2 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = - 7
Do đó,x1.x2 = - 35= m (thỏa mãn m ≤ 1 ).
Chọn D.
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
Chọn A
y ' = 3 x 2 - 6 x + m .
Hàm số có cực trị khi y' = 0 có hai nghiệm phân biệt :
Lời giải:
Để pt có hai nghiệm $x_1,x_2$ thì:
\(\Delta'=4^2-6m>0\Leftrightarrow m< \frac{8}{3}\)
Áp dụng định lý Viete cho pt bậc 2 thì:
\(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=\frac{3m}{2}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=15\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=15\)
\(\Leftrightarrow (-4)^2-3m=15\Leftrightarrow m=\frac{1}{3}\) (thỏa mãn)
Vậy \(m=\frac{1}{3}\)
Ta có: \(\Delta'=\)42 -2.3m =16-6m. Để phướng trình có 2 nghiệm, \(\Delta'\ge0\)
<=> 16-6m \(\ge\)0 <=> -6m\(\ge\)-16 <=> m\(\le\)\(\dfrac{8}{3}\)
Ta có : x12 +x22=15 <=> x12+2x1x2+x22-2x1x2= (x1+x2)2- 2x1x2
Theo hệ thức Vi-ét ta có: x1+x2=-4 ; x1x2=\(\dfrac{3m}{2}\)
=> \(\left(-4\right)^2-2.\dfrac{3m}{2}\)=15 <=> 16-3m=15 <=> -3m=-1 <=> m=\(\dfrac{1}{3}\) (thỏa mãn)
Vậy m= \(\dfrac{1}{3}\) thỏa mãn yêu cầu đề bài