K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)

\(\Leftrightarrow HB=\dfrac{9}{16}\cdot HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{9}{16}=24^2\)

\(\Leftrightarrow HC=32\left(cm\right)\)

hay HB=18(cm)

17 tháng 6 2017

mk k bt

17 tháng 6 2017

1 / xét tam giác ABH đồng dạng  vs CAH trg hợp g-g suy ra AB/AC =BH/AH 

                                                                                <=> 3 /7 =BH /42 

                                                                                           => BH =18 cm 

2 áp dụng hệ thức lượng AH^2 =BH .CH từ bh/ch =9/16 =>CH= 16BH/9 

TA CÓ AH ^2 =16BH^2 /9 SUY RA BH =36 cm SUY RA CH = 64 cm áp dụng pita go suy ra AB ,AC hoặc hệ thức lg cũng đc

AH
Akai Haruma
Giáo viên
20 tháng 9 2021

Lời giải:
Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$

Áp dụng định lý Pitago:

$AB^2+AC^2=BC^2$
$\Leftrightarrow (3a)^2+(4a)^2=225$

$\Leftrightarrow 25a^2=225$

$\Rightarrow a=3$ (do $a>0$)

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9a^2}{15}=\frac{9.3^2}{15}=5,4$ (cm)

$AC^2=CH.CB\Rightarrow CH=\frac{AC^2}{BC}=\frac{16a^2}{15}=\frac{16.3^2}{15}=9,6$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 9 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Lời giải:

Do $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$

Áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{144}=\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{25}{144a^2}$

$\Rightarrow a^2=25\Rightarrow a=5$ (do $a>0$)

$\Rightarrow AB=3a=15; AC=4a=20$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

$CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm) - theo định lý Pitago

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Hình vẽ:

loading...

11 tháng 12 2017

Sử dụng hệ thức về cạnh góc vuông và đường cao trong tam giác vuông, tính được BH =4,5cm, CH = 8cm

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{1}{AC^2}=\dfrac{1}{576}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=576\cdot\dfrac{25}{16}=900\)

\(\Leftrightarrow AC^2=1600\left(cm\right)\)

\(\Leftrightarrow AC=40\left(cm\right)\)

\(\Leftrightarrow AB=30\left(cm\right)\)

\(\Leftrightarrow BC=50cm\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot14=10.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10.5^2+14^2=306.25\)

hay BC=17,5(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10.5^2}{17.5}=6,3\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{14^2}{17.5}=11.2\left(cm\right)\end{matrix}\right.\)