K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

1) \(NMB = NIB = 90^o\)

2) a. \(EMN = MBA = \dfrac{\stackrel\frown{AM}}{2}\)          (1)

\(MBA = MNE\) (do BMNT nội tiếp)          (2)

\((1) + (2) \Rightarrow EMN = MNE\)

b. nối NO

△ANO cân => NAO = NOA = AMO

△ANO ~ △AOM (g.g) => \(\dfrac{AO}{AM} = \dfrac{AN}{OM}\) 

\(\Rightarrow AM.AN = AO.OM = R^2\)

3) \(MAB = 30^o \Rightarrow AMO = 30^o \Rightarrow OMB = 90^o - 30^o = 60^o \)

=> tam giác OMB đều => MB= OB = OM = R

Có:

\(\begin{cases} BMF = 90^o - 60^o = 30^o \\ BFM = 90^o - 60^o = 30^o \end{cases}\)=> △MBF cân tại B

=> MB = BF = R => OF = OB + BF = R+ R = 2R

Tam giác OMF có: \(MF^2 = OF^2 - OM^2 = 3R^2\)
Câu 3 ý 1 tớ ko hiểu đề nên tớ ko làm!!! Còn một số chỗ tắt nhưng dễ hiểu lắm, tớ rút gọn đi nha

1 tháng 5 2018

Các bạn ơi giúp mình với , mình sắp thi rồi

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

=>ΔAKB vuông tại K

Xét tứ giác BKHI có

góc BKH+góc BIH=180 độ

=>BKHI là tứ giác nội tiếp

b: Xét ΔAHI vuông tại I và ΔABK vuông tại K có

góc HAI chung

=>ΔAHI đồng dạng với ΔABK

=>AH/AB=AI/AK

=>AH*AK=AI*AB=1/4*R^2

14 tháng 9 2019

a,  H I B ^ = H K B ^ = 180 0

=> Tứ giác BIHK nội tiếp

b, Chứng minh được: DAHI ~ DABK (g.g)

=> AH.AK = AI.AB = R 2 (không đổi)

c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm

16 tháng 10 2023

loading...  loading...  loading...  

10 tháng 3 2017

a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )

b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2  => ĐPCM

c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD

d, Tam giác OCA đều =>  A B C ^ = 30 0 ; M C D ^ = 60 0

Tính được CD = 2CI =  2 . 25 2 = 25cm; CM =  25 2 cm, MD =  25 3 2 cm, Sxq = 2.π.CM.MD =  625 3 2 πcm 2

a: góc AMB=1/2*sđ cung AB=90 độ

góc FEB+góc FMB=180 độ

=>FMBE nội tiếp

b: Xét ΔKAB có

AM,KE là đường cao

KE cắt AM tại F

=>F là trực tâm

=>BF vuông góc AK