K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

\(AB=AC;BE=CF\)

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H1. Chứng minh tam giác ABE và tam giác ACF đồng dạngXét \(\Delta ABE\) và \(\Delta ACF\) :\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )\(\widehat{A}\) chung\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)Xét tam giác AEF và tam giác...
Đọc tiếp

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H

1. Chứng minh tam giác ABE và tam giác ACF đồng dạng

Xét \(\Delta ABE\) và \(\Delta ACF\) :

\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)

Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Xét tam giác AEF và tam giác ABC:

\(\widehat{A}\) chung

\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)

3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)

Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

 

3
NV
22 tháng 4 2021

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

NV
22 tháng 4 2021

undefined

22 tháng 8 2017

\(\Delta ABC\)\(\widehat{B}=\widehat{C}\)\(\Rightarrow\Delta ABC\) cân tại A

\(\widehat{ACE}=180^o-\widehat{C}\\ \widehat{ABF}=180^o-\widehat{B}\\ \widehat{B}=\widehat{C}\Rightarrow\widehat{ACE}=\widehat{ABF}\)

Xét \(\Delta ACE\)\(\Delta ABF\):

\(AC=AB\left(gt\right)\\ \widehat{ACE}=\widehat{ABF}\left(cmt\right)\\ CE=BF\left(gt\right)\\ \Rightarrow\Delta ACE=\Delta ABF\)

\(BE=BC+CE\\ CF=CB+BF\\ CE=BF\left(gt\right)\Rightarrow BC+CE=CB+BF\Leftrightarrow BE=CF\)

Xét \(\Delta ABE\)\(\Delta ACF\):

\(AB=AC\left(gt\right)\\ \widehat{B}=\widehat{C}\left(gt\right)\\ BE=CF\left(cmt\right)\\ \Rightarrow\Delta ABE=\Delta ACF\)

22 tháng 8 2017

bài này làm theo cách cộng góc làm như thế nào zị bạn

9 tháng 1 2020

Hình bạn tự vẽ nha!

Sửa lại đề là \(CF=EB.\)

a) Ta có:

\(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABE}=180^0\\\widehat{ACB}+\widehat{ACF}=180^0\end{matrix}\right.\) (các góc kề bù).

\(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

=> \(\widehat{ABE}=\widehat{ACF}.\)

b) Xét 2 \(\Delta\) \(ABE\)\(ACF\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(BE=CF\left(gt\right)\)

=> \(\Delta ABE=\Delta ACF\left(c-g-c\right).\)

c) Theo câu b) ta có \(\Delta ABE=\Delta ACF.\)

=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng).

Hay \(\widehat{HEB}=\widehat{KFC}.\)

Xét 2 \(\Delta\) vuông \(EBH\)\(FCK\) có:

\(\widehat{BHE}=\widehat{CKF}=90^0\left(gt\right)\)

\(EB=FC\left(gt\right)\)

\(\widehat{HEB}=\widehat{KFC}\left(cmt\right)\)

=> \(\Delta EBH=\Delta FCK\) (cạnh huyền - góc nhọn) (đpcm).

Chúc bạn học tốt!

9 tháng 1 2020

Sửa đề: Lấy E thuộc tai đối của tia BC,Lấy F thuộc tia đối của tia CB sao cho CF = EB

Giải

a/Có: \(\widehat{ABC}+\widehat{ABE}=180^0\)

\(\widehat{ACB}+\widehat{ACF}=180^0\)

Lại có: \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

=> \(\widehat{ABE}=\widehat{ACF}\)

b/ Xét ΔABE và ΔACF ta có:

AB = AC (GT)

\(\widehat{ABE}=\widehat{ACF}\) (câu a)

EB = CF (GT)
=> ΔABE = ΔACF (c - g - c)

c/ Có: ΔABE = ΔACF (câu a)

=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng)

Hay: \(\widehat{HEB}=\widehat{KFC}\)

Xét ΔHBE và ΔKCF ta có:

EB = CF (GT)

\(\widehat{HEB}=\widehat{KFC}\) (cmt)

=> ΔHBE = ΔKCF (c.h - g.n)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì tổng 3 góc trong 1 tam giác luôn bằng 180 độ.

Xét hai tam giác AEB và DEC có:

\(\widehat {AEB} = \widehat {DEC}\)(đối đỉnh) và \(\widehat {BAC} = \widehat {BDC} = {90^o}\).

Suy ra: \(\widehat {ABE} = \widehat {DCE}\) 

Xét 2 tam giác AEB và DEC có:

\(\widehat {BAC} = \widehat {BDC} (= {90^o}\))

\(AB=DC\) (gt)

\(\widehat {ABE} = \widehat {DCE}\) (cmt)

=>\(\Delta AEB = \Delta DEC\)(g.c.g)